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Journal of
Fluids

Engineering Editorial

Recent Advances in Numerical Methods for Fluid Dynamics and Heat Transfer

Computational fluid dynamics �CFD� tools are the key for mod-
ern understanding of many physical, electrochemical, and biologi-
cal processes. They not only help explain complex events involv-
ing disparate temporal and spatial scales, but also allow us to peer
at the heart of breakthrough science. This special section of the
Journal of Fluids Engineering is a collection of select papers pre-
sented at the ASME 2004 Fluids Engineering Division Summer
Meeting in Charlotte, North Carolina in the symposium on “Al-
gorithmic Developments in CFD” sponsored by the Fluids Engi-
neering and Heat Transfer Divisions. They represent an excellent
cross section of research and developments crucial to issues both
in fundamental progress and industrial applications. The sympo-
sium on algorithmic developments started in the 1990s and is
intended to provide means for presenting novel and enhanced nu-
merical algorithms for computational fluid dynamics �CFD� appli-
cations, direct numerical simulation, Monte Carlo methods, itera-
tive and segregated solvers, shearing interface algorithms,
exploitation of parallel architecture, and adaptive techniques. Spe-
cific topics of interest include, but are not limited to, laminar and
turbulent flows, reacting flows, compressible and incompressible
flows, and non-Newtonian flows. The symposium is led by Sub-
rata Roy from Kettering University, along with co-organizers
Dhanireddy R. Reddy from NASA Glenn Research Center and
Miguel Visbal from the Air Force Research Laboratory at Wright
Patterson. The ongoing concurrent series of these symposia epito-
mize excellent cutting edge numerical research from an interna-
tional representation of applied mathematicians, numerical physi-
cists, fluid dynamicists, as well as industrial practitioners. The
diffusion of knowledge that sprouts from the syntheses of ideas of
these leading scientists and engineers usher in new technological
breakthroughs and developments.

The seven papers selected for this collection are divided into
two loosely formed groups. The first four papers present funda-
mental algorithm developments with underlying important practi-
cal applications. Three papers in the following group focus on
novel implementations of developed numerical techniques for a
wide range of flow simulations.

In the first group, Issa from Texas A&M University and Yao
from Carnegie Mellon University develop a new numerical recipe
for modeling the dynamics of the droplet-wall interaction and heat
transfer mechanisms at subatmospheric to elevated ambient pres-
sures, and for surface temperatures ranging from nucleate to film
boiling. This has applications in a wide range of problems, includ-
ing mist cooling of thin-strip casting, gas turbine airfoils, glass
tempering, and electronic chips where misting jets show a better
cooling efficiency and control of the material temperature. Simu-
lation results for their method compares well against available test
data for single stream of droplets at nonatmospheric conditions.
The next paper is on multilevel Boundary Element Methods

�BEM� for fast and accurate solutions of steady Stokes flows. A
major problem dragging the progress of BEM is its high memory
overhead and efficiency concerns for a general class of problems.
The novel formulation proposed by Dargush and Grigoriev of the
State University of New York at Buffalo shows promise in signifi-
cantly overcoming that problem. For a test case in an irregular
pentagon, the new formulation reduces the CPU times by a factor
of nearly 700,000 while the memory requirements are shown to
reduce by more than 16,000 times. The third paper in this category
is the development of a meshless local Petrov-Galerkin control
volume algorithm for fluid thermal system applications by Aref-
manesh et al. from Islamic Azad University of Tehran. The accu-
racy and applicability of their method have been benchmarked for
the transient heat conduction, potential flow over a block, and
convection-diffusion-type non-self-adjoint problems. The Fourier
series along with a modified upwinding relation has been utilized
for optimal �artificial� diffusion in convective flow cases. The
fourth paper by Celik et al. from West Virginia University inves-
tigates the limitations of the well-known Richardson extrapolation
method focusing on the origin of oscillatory convergence in finite
difference methods and demonstrates statistical performances of
some possible remedies based on the modeled error equation. A
new method based on the extrapolation of approximate error is
also proposed.

The next set of papers begins with “An Adaptive Wavelet
Method for Incompressible Flows in Complex Domains” by Wira-
saet and Paolucci of the University of Notre Dame. They over-
come the well-known difficulty of applying such a method for
complex domains by using the Navier-Stokes/Brinkman equa-
tions, which take into account solid obstacles by adding a penalty
term in the momentum equation. The method is based on interpo-
lating wavelets and has been tested for incompressible flows over
obstacles. Stolz from the Institute of Fluid Dynamics, Zürich,
Switzerland has applied the newly developed high-pass filtered
Smagorinsky models for large-eddy simulations of wall-bounded
compressible flows. Specifically, the simulation of a spatially de-
veloping supersonic turbulent boundary layer at a Mach number
of 2.5 and momentunm-thickness Reynolds numbers at inflow of
approximately 4500 is validated with experimental data. The nu-
merical method uses entropy splitting along with a finite differ-
ence approximation for the diffusive flux. In recent days, there has
been a flurry of research on the level set methods. The final paper
in this anthology is by collaborators from Switzerland and the
USA on the Streamline-Upwind/Petrov-Galerkin �SUPG� finite-
element based level set method. Shepel and Smith from the Paul
Scherrer Institut in Switzerland and Paolucci from the University
of Notre Dame implemented the level set interface tracking
method in the commercial FIDAP and CFX-4 codes. The procedure
can be used for both structured and unstructured grids. Two for-
mulations encompassing the single phase liquids and the coupled
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motion of the gas-liquid phases are given and tested for large
density and viscosity ratios.

I would like to congratulate the authors of the papers in this
special section of the Journal of Fluids Engineering for their
staunch efforts in preparing and improving their manuscripts in
response to the reviews. The anonymous referees contributed a lot
of their time and expertise. They deserve special thanks. I also
thank Laurel Murphy for providing consistent support and help

throughout the progress of this collection. Finally, Reddy and Vis-
bal did more than their share in organizing the series of symposia
that culminated into this special section. I most certainly acknowl-
edge their help.

Subrata Roy
Associate Editor
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A Numerical Model for the Mist
Dynamics and Heat Transfer at
Various Ambient Pressures
A numerical model is developed to simulate the dynamics of the droplet-wall interaction
and heat transfer mechanisms at sub-atmospheric to elevated ambient pressures, and for
surface temperatures ranging from nucleate to film boiling. This is the first time a general
model is developed to study these phenomena over a wide range of ambient pressures.
The model provides insight to the optimal flow conditions, and droplet size distribution
for best heat transfer enhancement. Simulations are provided for single stream droplet
impactions, and for full conical sprays using nozzles that dispense a spectrum of non-
uniform droplets. The model simulation was compared against available test data for
single stream of droplets at non-atmospheric conditions, and the simulation compared
favorably well with the test data. �DOI: 10.1115/1.1976743�

1 Introduction
Intense cooling methods have been widely used in many indus-

trial applications, especially those requiring rapid cooling from
high temperatures. In applications where mist cooling is per-
formed at atmospheric conditions, such as thin strip casting, glass
tempering, and electronic chip cooling �1–4�, cooling by misting
jets provides high efficiency of cooling and a better control of the
material temperature. Mist cooling has also found use in high
pressure applications such as gas turbines �5–7�. Experiments
have been conducted on the internal cooling of gas turbine airfoils
by injecting mist with the compressed air. The results show sig-
nificant enhancement in the cooling process, whereas an injection
of 5% water mist into air can enhance the heat transfer by about
20–30% �5� and reduce the consumption of the compressed air
conventionally required to cool the airfoils by almost 50%.

In water spray cooling, a limited number of experiments �8–11�
have been performed at either high or sub-atmospheric ambient
pressures. Unfortunately, none of those experiments were con-
ducted for full spray conditions. They have been performed either
for single droplet impactions, or for a single sessile �stationary�
droplet on a hot surface. In the diesel spray impingement onto the
cylinder walls, experiments �12–14� have been conducted using
high-speed photography to examine the distribution pattern of the
spray and fundamental parameters such as the wall-spray height,
and the wall-spray radius. The common disadvantage made by
those researchers is that their studies were mostly conducted at
room surface temperatures.

Very few models that predict the spray behavior have been
developed. The existing models do not consider the droplet
bouncing behavior at the wall, but only track the droplets up to the
point where they make contact without calculating the partial
evaporation and the heat transfer effectiveness at impaction. In
addition, the existing models were often based on experiments
conducted at atmospheric pressure. Therefore, a model that can
handle the effect of a wide range of ambient pressures is of tre-
mendous value to the spray cooling research.

The objective of this paper is to simulate high and sub-
atmospheric pressures based on the model developed earlier for
atmospheric applications �15� with a proper account of the
droplet-wall interaction and air-mist heat transfer mechanism. Un-
derstanding of the droplet contact heat transfer at high and sub-

atmospheric pressures is scarce. The challenges behind this re-
search are to obtain a valuable basic understanding of the
parameters that affect the heat transfer enhancement over a wide
range of operating pressures.

2 Droplet Dynamics
Experiments conducted for single droplet impingements on

heated surfaces at atmospheric pressures show that during impac-
tion, the droplet spreads in the form of a flattened disk along the
surface, and then recoils as a result of the droplet surface tension
before rebounding. The droplet will rebound without breaking up
as long as the impinging droplet Weber number is less than the
critical Weber number at which the droplet disintegrates. There
are several factors that influence the droplet impaction mode at the
wall such as surface thermal conductivity, surface roughness, sur-
face temperature, and droplet impingement angle. However, one
factor, which is the Weber number, is considered to be the gov-
erning parameter for the droplet deformation. Data gathered from
several sources for water droplet impaction at atmospheric condi-
tions �16–19� �and at about Leidenfrost temperature� show the
relationship between the droplet normal coefficient of restitution
and the normal impinging Weber number �Fig. 1� �15�:

en = 1 − 0.1630Wen
0.3913 �1�

where

Wen =
�dvi,n

2 d

�d
�2�

According to Chandra and Avedisian �20�, the droplet maxi-
mum spread was theoretically shown to be directly proportional to
the square root of the Weber number. Experimental data �20� show
the maximum droplet spread to decrease as the wall temperature
increases �as shown in Fig. 2�. Therefore, the momentum loss of
the impacting droplet also decreases with temperature. As a result,
it is expected that the droplet coefficient of restitution at tempera-
tures lower than the Leidenfrost is slightly lower than that pre-
sented in Fig. 1.

As the ambient pressure increases, both the droplet density and
surface tension decrease with the rate of decrease in the surface
tension much larger than that of the droplet density. As a result, at
high pressure, the droplet will deform and spread more. However,
the change in the droplet spread is not very significant resulting
only in about 16% increase at 20 atm and 7% decrease at about
0.01 atm �21�. Therefore, the correlation between the droplet co-
efficient of restitution and the droplet Weber number developed
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for atmospheric conditions �15� can still be applicable with suffi-
cient accuracy for higher ambient pressures, and for sub-
atmospheric pressures.

3 Droplet Heat Transfer
The various modes of heat transfer associated with the droplet

heat transfer consist of �Fig. 3� �22�: 1� conduction through wall
contact, 2� convection associated with the bulk air flow and the
droplet cooling of the thermal boundary layer, and 3� wall radia-
tion. Contact heat transfer can be further classified into two types:

a� heat transfer by wet-contact in which the droplets are in con-
tinuous or semi-continuous contact, and b� heat transfer by non-
wet contact where after a short period of contact, a film layer is
generated between the droplet and the wall preventing direct
contact.

The droplet contact heat transfer effectiveness is defined as the
ratio of the actual heat transfer by the droplet to the maximum
possible heat transfer that can be achieved. The maximum release
of heat consists of: 1� the pre-boiling cooling potential when the
droplet arrives to the surface at a temperature lower than the satu-
ration temperature, 2� the release of heat when the droplet com-
pletely vaporizes at the saturation temperature, and 3� the super-
heating of the droplet to the surface temperature. The droplet heat
transfer effectiveness can be expressed as

� =
qc

G�hfg + cp,l�Tsat − Tliq� + cp,v�Tw − Tsat��
�3�

In an earlier study �15�, it was shown that the heat transfer
effectiveness is strongly dependent on the normal impinging drop-
let Weber number and the wall temperature. There are also other
secondary factors influencing the heat transfer effectiveness but
not as influential as the preceding ones, such as the droplet im-
pingement frequency, surface inclination angle, surface material
and roughness. Heat transfer effectiveness versus the wall tem-
perature and droplet impinging Weber number is shown in Fig. 4
�15�. The data are based on experiments conducted by Pedersen
�23�, Senda et al. �24�, and McGinnis and Holman �25� at atmo-
spheric pressure conditions and for a wide temperature range.

As the ambient pressure increases, the effect of the pressure on
the enthalpy of vaporization and the specific heat constant for
water becomes significant. As shown in Fig. 5, when the pressure
increases, hfg reduces significantly while cp,1 and Tsat increase. A
large portion of the heat absorbed is now being used to increase
the droplet temperature towards the saturation temperature. There-
fore, at high ambient pressures, the effect of droplet subcooling
becomes more evident and the decrease in the enthalpy of vapor-
ization makes the evaporation of the liquid droplets much easier.

3.1 Effect of Ambient Pressure on Non-Wet Cooling. High-
pressure conditions significantly alter the droplet cooling effi-
ciency on heated surfaces. The effect of pressure on the evapora-
tion time and on the Leidenfrost temperature of discrete water
droplets deposited on metallic plates such as stainless steel, brass
and monel have been studied by Emmerson and Snoek �10,11�.
The chamber pressure ranged from 1 to 5.1 atm, and the water
droplet size on the plate was estimated to be 3.8 mm. Testa and
Nicotra �9� studied the influence of sub-atmospheric pressures on
the Leidenfrost temperature for a single stream of water droplets
impinging on a molybdenum strip. The droplet size was about 2

Fig. 1 Droplet coefficient of restitution as function of Wen at
about Leidenfrost temperature „1 atm… †15‡

Fig. 2 Water droplet maximum spread versus wall tempera-
ture „Adapted from Chandra and Avedisian †20‡…

Fig. 3 Basic mechanisms for spray heat transfer †22‡

Fig. 4 Droplet contact heat transfer effectiveness in the tran-
sition to film boiling region „at 1 atm… †15‡
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mm, and the pressure in the vacuum chamber ranged from 1 atm
down to 0.065 atm. Figure 6 shows the variation in the Leiden-
frost temperature as function of the normalized ambient pressure
for a wide range of pressures. The data demonstrate that the mini-
mum heat flux corresponds to the maximum lifetime of the drop-
let. Figure 7 shows the effect of the ambient pressure on the mini-
mum heat flux.

3.2 Effect of Ambient Pressure on Wet Cooling. Halvorson
conducted experiments on the droplet impact cooling using a
sealed chamber with ambient pressures of 0.1, 0.2, 0.5, 1.0, and
2.0 atm �8�. He used three different sizes of gauge needles that

produced droplet diameters ranging from 2.3 to 3.9 mm. The
droplet frequencies ranged from 2 to 15 droplets per second, and
the droplet impact velocity was about 1.3 m/s. In all the experi-
ments, the droplet mass flux ranged from 0.15 to 1.6 kg/m2 s. The
heated surface was a nickel-plated end of a copper cylinder placed
vertically and heated to temperatures where critical heat fluxes
from the droplets impaction were obtained. The temperature at
which the critical heat flux occurred ranged between 75 and
150 °C, with the lowest temperatures occurring at the lowest pres-
sures. Figure 8 shows the variation in the critical heat flux tem-
perature as function of the normalized ambient pressure for a wide
range of pressures, and Fig. 9 shows the variation in the critical
heat flux.

3.3 Contact Heat Transfer Effectiveness for Different Am-
bient Pressures. An understanding and predictability of the
droplet-wall contact heat transfer effectiveness is needed for high
pressure spraying environments. Using the results from Figs. 6–9
and applying them to Fig. 4, the predictability of the droplet con-
tact heat transfer effectiveness can be extended from atmospheric
pressure conditions to higher pressures, and also to sub-
atmospheric pressures. At high ambient pressures, film boiling
regime for droplet cooling would be shifted further to a high tem-
perature range as the pressure increases. As a result, a heat trans-
fer mode that would be in the film boiling at atmospheric pressure
would now occur closer to the nucleate boiling region for high
ambient pressures. The high pressure would then significantly in-
crease the droplet heat transfer effectiveness. At sub-atmospheric
pressures, film boiling region would be shifted further to a lower
temperature region as the pressure decreases, and the droplet heat

Fig. 5 Effect of pressure on water enthalpy of vaporization
and specific heat constant

Fig. 6 Variation in the Leidenfrost temperature with ambient
pressure

Fig. 7 Minimum heat flux as function of ambient pressure

Fig. 8 Variation in the temperature at the critical heat flux with
ambient pressure

Fig. 9 Critical heat flux as function of ambient pressure
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transfer effectiveness would significantly decrease. A new set of
droplet contact boiling curves similar to that shown in Fig. 4 �for
atmospheric pressure condition �15�� can be obtained for different
operating pressures as shown in Figs 10 and 11 for the case of 0.1
and 50 atm, respectively.

4 Computation Scheme
Numerical computations are performed using FLUENT soft-

ware. The modeling of the spray consists of a mixture of two
phases: an air medium referred to as the continuous phase, and the
water droplets referred to as the discrete phase. The droplets are
dispersed in the continuous phase and are traced stochastically in
the Lagrangian reference frame. The trajectory of the droplet is
solved by integrating the force balance on the droplet, where the
inertial force is balanced by the drag force and the gravitational
force. The droplet temperature is calculated by applying an energy
balance on the droplet. The sensible heat change in the droplet is
balanced by the convective, radiative, and latent heat transfer be-
tween the droplet and the gas phase medium. The turbulence con-
tinuous phase model uses the two equations in the k-� method
expressed in Eulerian coordinates. The effect of the gas turbulence
on the droplets is obtained by adding a velocity fluctuation to the
mean gas velocity while tracing the droplets. A control volume
based approach is used to convert the governing equations into
algebraic equations that can be then numerically solved.

In this model �21�, steady state flow conditions are simulated. It
is assumed that no droplets interaction occurs, and dilute spray
conditions prevail. Also it is assumed that the droplet impinging

Weber number is small enough so that the droplets do not to
splatter. An axisymmetric model is developed to simulate the
spray flow over a heated plate that is 101.6 mm in diameter. The
nozzle is situated at the center of the plate at a distance of 40 mm
above the plate. Weighing factors are used to concentrate the grid
mesh at the center of the computation domain, and also near the
plate surface. Sufficient grid refinement at the wall is necessary to
capture the wall interaction event and to ensure computational
stability. For dilute spray conditions �water mass flux
�2 kg/s m2� a quadrilateral grid mesh of 75�60 provided ac-
ceptable numerical accuracy. However, for higher water mass
fluxes, a more refined grid mesh was needed. Therefore, the ac-
curacy of the simulation results was grid size dependent, and the
grid size that was needed was in turn dependent on the water mass
flux. A grid independence study was conducted where the density
of the nodes near the wall was increased until the solution no
longer changed with further grid refinement. To achieve this, an
enhanced wall treatment using the Two-Layer Zonal Model was
enabled in FLUENT, where value of y+�=�u�y/�� at the wall-
adjacent cells was kept close to 1.

During impaction, the droplet mass is recalculated based on the
droplet contact heat transfer empirical correlations, and the excess
mass that is the difference between the incoming droplet mass and
the re-calculated mass is released as saturated vapor at the nearest
cells to the wall. The created vapor mass has the same momentum
and energy of the phase from which it is created. The calculations
for the droplet dynamic interaction with the wall, and the droplet-
wall contact heat transfer effectiveness are introduced into
FLUENT through user-defined functions which are compiled and
linked to FLUENT executable software during runtime. The cou-
pling between the discrete phase and continuous phase is accom-
plished as follows. The equations for the gas phase �continuity,
momentum, energy� are solved prior to the injection of droplets.
The equations for the liquid droplet phase are then introduced, and
the trajectories for the droplets are calculated. The effect of the
discrete droplets onto the gas phase is then considered by resolv-
ing the gas phase equations with the newly calculated source
terms associated with the presence of the droplets. The droplets
trajectories are then recalculated based on the modified results of
the gas phase equations. The procedure is repeated until solution
convergence is achieved.

The boundary conditions for the computation domain are as
follows �Fig. 12�. Velocity inlet boundaries are applied for the
water droplets and air. The injection plane is considered to be at a
small distance below the nozzle exit plane where the droplets are
released. It is assumed that the water stream at this location has
been fully atomized. This simplification is necessary to avoid the
need for a complicated nozzle model where flow conditions are
difficult to simulate. At the vertical edges of the computation do-

Fig. 10 Comparison in droplet contact heat transfer effective-
ness between 1 and 0.1 atm ambient pressures

Fig. 11 Comparison in droplet contact heat transfer effective-
ness between 1 and 50 atm ambient pressures

Fig. 12 Model boundary conditions „shown here for the case
of full spray injection…
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main, pressure outlet boundaries are applied. The wall boundary
represented by the strip is assumed to be at a fixed temperature.

5 Results and Discussion

5.1 Droplet-Wall Interaction Using Multiple Stream
Injections. A stream of water droplets with diameters of 10, 48,
86, 124, 162 and 200 �m were injected into an air stream �where
the injected droplet and air velocity is 3 m/s each�. The air and
water mass flow rates were 0.028 and 1.2�10−3 kg/s, respec-
tively. The surface was heated to 525 °C. Simulations were gen-
erated for 0.5, 1, and 5 atm ambient pressures. Figures 13–15
show the interaction between the droplets and the heated wall. In
all the cases, the 10 �m droplet was too small to make it to the
surface and drifted away until completely evaporated. During

their trajectory, the droplets underwent transient heating, and the
evaporation occurred faster as the pressure increased due to the
decrease in the latent heat of vaporization. More vapor was also
generated from impaction at higher pressure due to the shift in the
droplet contact boiling regime. This resulted in an increase in the
droplet heat transfer effectiveness. It was shown that for all the
droplets, the rebound height decreased with the increase in pres-
sure due to the higher vapor density and higher dynamic viscosity
of the air causing an increase in the drag force. The droplets were
therefore closer to the wall.

5.2 Heat Transfer Using Single Stream Impingements. In
order to check the sensitivity and the validity of the model to
various operating pressure conditions, the spray experiment con-
ducted by Halvorson �8� was simulated. In this experiment, a
single stream of water droplets ranging from 2.3 to 3.9 mm im-
pinged on a heated nickel plate with wetting contact. The imping-
ing droplet average velocity was about 1.3 m/s and the maximum
droplet mass flux was about 2 kg/m2 s. The model was simulated
for the following chamber pressures: 0.1, 0.5, 1, 2, 5 10, 30 and 50
atm. Experimental data by Halvorson were only available for
comparison at 0.1, 0.5, 1, and 2 atm ambient pressures �chamber
pressures�. At 5, 10, 30 and 50 atm, the presented results were
based on the model predictions at high operating ambient pressure
conditions. Figure 16 shows the droplet total heat flux �at the
critical heat flux point� as function of the mass flow flux. The total
heat flux accounts for the mist heat flux, radiation, and air con-
vection arising from the local evaporation at the surface. The re-
sults reveal a good agreement between Halvorson’s experimental
data and the model predictions. The almost linear relationship
between the critical heat flux and the mass flux shows the spray to
behave like an ideal one. The likelihood of the droplets interaction
and the flooding on the surface is very small at those relatively
low mass fluxes.

Figure 17 shows the total heat flux and the droplet contact heat
transfer effectiveness at 2 kg/m2 s. This mass flux corresponds to
the stagnation point in the spray at the wall. The 0.1 atm ambient
pressure produces a 60% decrease in the critical heat flux from
that at atmospheric pressure for the same mass flux, while the 50
atm ambient pressure produces a 73% increase in the critical heat
flux. At 50 atm, the peak in the droplet contact heat flux is close to
the maximum that can be possibly achieved �21�. This trend is
similar to the experimental data for pool boiling of water �26�
where the peak in the critical heat flux was found to occur some-
where between 1/4 to 1/3 of the critical pressure for water �which
is between 54 and 73 atm�. At pressures above 73 atm, data for
pool boiling of water �26� shows a decrease in the critical pool
heat flux until it vanishes at the critical pressure. With the lack of
experimental data at extreme pressures, it is expected that the

Fig. 13 Droplet-wall interaction using multiple streams of
droplets at 0.5 atm ambient pressure

Fig. 14 Droplet-wall interaction using multiple streams of
droplets at 1 atm ambient pressure

Fig. 15 Droplet-wall interaction using multiple streams of
droplets at 5 atm ambient pressure

Fig. 16 Comparison between the total heat flux at various am-
bient pressures
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droplet heat flux would follow a similar trend.
The droplet contact heat transfer effectiveness is shown to in-

crease with pressure. There was no noticeable change in the heat
transfer effectiveness from 30 to 50 atm. The reason for this is that
based on our definition of the effectiveness, the actual droplet heat
transfer and the maximum possible heat removal by the droplet
have both increased in similar proportions at these high pressures.
At high pressures, the sub-cooling of the droplet has a significant
effect on the absorption of heat. This is because of the fact that
with the increase in pressure, the saturation temperature and the
liquid specific heat constant also increase, and therefore a large
portion of heat is needed to increase the droplet temperature to-
wards the saturation temperature. Results are shown in Fig. 18 for
Halvorson’s data and the model predictions at high pressures. The
figure shows that at 50 atm, the droplet sub-cooling accounts for
35% of the maximum possible heat removal by the droplet, com-
pared to 11% at atmospheric pressure and to 3% at a sub-
atmospheric pressure of 0.1 atm.

5.3 Heat Transfer Using a Full Spray. One of the challenges
in air mist cooling is to understand the effect of the droplet size on
the heat transfer enhancement and on the uniformity of cooling.
The droplet size is an important factor because it affects the
amount of deposition on the surface. It will be shown that the
desirable droplet size to be used in the spray depends strongly on
the system pressure. Figures 19–21 show the spray mist at 0.5, 1,
and 10 atm. In this case a full conical spray type is injected onto
a stainless steel plate at 525 °C. The initial air and droplet tem-
perature is 27 °C. For all ambient pressures cases, the air and
water mass flow rates are 2�10−3 and 10−4 kg/s �20:1 ratio�,
respectively. The nozzle is situated at a distance of 40 mm above

Fig. 19 Mist spray pattern at 0.5 atm ambient pressure
„Avg. d=19.2 �m by volume…

Fig. 20 Mist spray pattern at 1 atm ambient pressure „Avg. d
=19.2 �m by volume…

Fig. 21 Mist spray pattern at 10 atm ambient pressure
„Avg. d=19.2 �m by volume…

Fig. 17 Total heat flux and droplet contact heat transfer effec-
tiveness at 2 kg/m2 s for various ambient pressures

Fig. 18 Droplet sub-cooling versus ambient pressure
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the plate. The air velocity exiting the air chamber is about 35 m/s.
The air-mist nozzle consists of a liquid chamber surrounded by an
air chamber with operating water and air gauge pressures of 10
and 14 psig, respectively. The exit diameter of the water chamber
is about 1 mm and that of the nozzle system is about 7.9 mm. The
liquid flow flux at the plate center �stagnation point� is
2.5 kg/m2 s at 1 atm ambient pressure. For these flow parameters,
the nozzle spray angle was 13°. The spray has a spectrum of
droplet diameters with an average diameter of 19.2 �m by vol-
ume, a minimum of 9 �m, and a maximum of 63 �m as shown in
Fig. 22. The data presented in this figure are based on the experi-
ment conducted by Sozbir and Yao �2�.

For the low sub-atmospheric pressure of 0.5 atm, and for the
same air and water mass flow rate as the 1 atm case, the droplets
are injected with a velocity two times greater than that at 1 atm.
With much less air drag acting on the droplets, the droplets reach
the surface with a much higher velocity than the case at 1 atm.
This causes a drastic increase in the droplet momentum, and the
droplets hit mostly at the jet impingement point. The result is a
non-uniform cooling of the surface, with high cooling at the plate
center, and a sharp decrease in the cooling further away from the
center. Compared to the case at 1 atm, and for the same air and
water mass flow rate, simulation of the spray at 10 atm ambient
pressure shows the droplets to impinge on the surface at a much-

reduced velocity due to the ten times increase in the air density.
The reduction in the droplet speed causes the droplets to scatter
over a wide area with more droplets drifting away. Simulation
also shows that at 10 atm the droplets evaporate much easier than
at 1 atm. Therefore, droplets that make it to the surface, impinge
with a much lower velocity and smaller diameter compared to the
case at 1 atm. As a result, the droplet impinging Weber number
decreases sharply causing a drastic decrease in the droplet heat
transfer effectiveness. Figure 23 shows a comparison in the heat
transfer coefficient between the three cases. Simulation shows that
9.4% of the original spray mass evaporated at 0.5 atm, compared
to 15% at 1 atm, and 65% at 10 atm.

Figure 24 shows the mist heat transfer coefficient at 0.5, 1, and
10 atm, whereas in this case, finer droplets are used at 0.5 atm and
larger droplets are used in the spray at 10 atm, with a spread in the
droplet spectrum equivalent to that in Fig. 22. The spray at 0.5
atm has an average droplet size of 7.6 �m �min d=3.6 �m, max
d=25 �m�, while the spray at 10 atm has an average droplet size
by volume of 60 �m �min d=28 �m, max d=198 �m�. The de-
crease in the droplets average size from 19.2 to 7.6 �m for the 0.5
atm case �same water and air mass flow rates� causes the spray to
have a higher droplet number density but a lower droplet momen-
tum. As a result, the droplets would hit at the jet impingement
point with lower impacting Weber numbers. Therefore, the cool-
ing will be less at the center but more uniform and spreads out to
a larger area �as seen in Fig. 25�. The decrease in the droplet

Fig. 23 Mist spray heat transfer coefficient profile versus am-
bient pressure using the same droplet size spectrum

Fig. 24 Mist spray heat transfer coefficient versus ambient
pressure using different droplet size spectrum

Fig. 22 Droplet count distribution based on the experiment by
Sozbir and Yao †2‡

Fig. 25 Mist spray pattern at 0.5 atm ambient pressure
„Avg. d=7.6 �m by volume…
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Weber number at the jet impingement point would cause a de-
crease in the heat transfer effectiveness. This can be seen by com-
paring Fig. 24 with Fig. 23.

At 10 atm ambient pressure, for the same amount of air and
water mass flow rate used earlier, and with larger droplets �60 �m
compared to 19.2 �m�, the spray has a lower droplet number
density but a higher droplet momentum. Figure 26 shows the
spray mist at 10 atm. More droplets make impact at the plate
center �Fig. 26� than when finer droplets are used �Fig. 21�, and
the number of drifting droplets decreases sharply. With larger
droplets, the impinging Weber number increases, and the chances
that the droplets would make multiple impingements also in-
crease. This causes an increase in the droplet contact heat transfer
effectiveness.

6 Conclusions
A numerical model was developed to study the mist cooling on

metallic surfaces heated in the temperature range between nucle-
ate and film boiling at various ambient pressures. The model,
which was initially developed for simulating atmospheric pressure
conditions, was expanded to simulate high and sub-atmospheric
pressure conditions by properly accounting for the droplet-wall
impaction and the air-mist heat transfer mechanism as function of
the ambient pressure. The model was tested against available ex-
periments for single stream droplet impactions and compared fa-
vorably well. Spray simulation conducted for a wide range of
pressures �using nozzles that dispense a spectrum of non-uniform
droplets� reveals the following primary key issues regarding drop-
let dynamics, heat transfer, and vaporization:

1� Droplet dynamics. At higher pressures, the larger the droplet
size, the better is the droplet-wall impaction. Larger droplets
are able to hit the surface and better spread at impaction. At
sub-atmospheric pressures, larger droplets have a detrimen-
tal effect due to their ballistic and localized impaction near
the stagnation point. This is caused by the much reduced air
resistance due to the lower ambient density. For all ranges of
pressure, a spray dispersing a spectrum of non-uniform
droplets always has the larger droplets impinging closer to
the center while the smaller droplets impinging further
away.

2� Droplet heat transfer. At higher pressures, the Leidenfrost
point shifts to a higher temperature. This leads to an increase
in the wetting capability of the droplets at impaction, and
therefore, to a higher droplet contact heat transfer effective-
ness. For the same amount of liquid loading, and for low-
pressure applications, larger droplets result in non-uniform

cooling because the ballistic impaction of larger droplets
causes a sharp increase in the heat transfer near the stagna-
tion point. On the other hand, for high-pressure applications,
larger droplets result in uniform cooling due to better impact
at the wall.

3� Droplet vaporization. At high ambient pressures, more va-
por is generated at each droplet impaction at the wall. This
is due to the much-reduced latent heat of vaporization at
higher pressures. The result is an increase in the droplet
contact heat transfer effectiveness.

Nomenclature
cp,l 	 liquid specific heat constant �J /kg K�
cp,v 	 vapor specific heat constant �J /kg K�

d 	 droplet diameter ��m�
en 	 normal coefficient of restitution
G 	 liquid mass flux �kg/m2 s�

hfg 	 latent heat of vaporization �J /kg�
P 	 ambient pressure �N/m2�

qc 	 surface heat flux �W/m2�
qCHF 	 critical heat flux �W/m2�
qMin 	 minimum heat flux �W/m2�

TCHF 	 temperature at critical heat flux �°C�
TLieden 	 Leidenfrost temperature �°C�

Tliq 	 liquid temperature �°C�
Tsat 	 liquid saturation temperature �°C�
Tw 	 wall temperature �°C�
u� 	 shear velocity at the wall �m/s�

vi,n 	 droplet impinging normal velocity at the sur-
face �m/s�

va 	 air velocity �m/s�
Wen 	 normal impinging droplet Weber number

y 	 distance from the wall �m�
y+ 	 normalized distance from the wall �m�
� 	 droplet contact heat transfer effectiveness
� 	 density of the liquid-vapor mixture �kg/m3�

�d 	 droplet density �kg/m3�
� 	 dynamic viscosity of the liquid-vapor mixture

�kg/s m�
�d 	 droplet surface tension �N/m�
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Fast and Accurate Solutions of
Steady Stokes Flows Using
Multilevel Boundary Element
Methods
Most recently, we have developed a novel multilevel boundary element method (MLBEM)
for steady Stokes flows in irregular two-dimensional domains (Grigoriev, M.M., and
Dargush, G.F., Comput. Methods. Appl. Mech. Eng., 2005). The multilevel algorithm
permitted boundary element solutions with slightly over 16,000 degrees of freedom, for
which approximately 40-fold speedups were demonstrated for the fast MLBEM algorithm
compared to a conventional Gauss elimination approach. Meanwhile, the sevenfold
memory savings were attained for the fast algorithm. This paper extends the MLBEM
methodology to dramatically improve the performance of the original multilevel formu-
lation for the steady Stokes flows. For a model problem in an irregular pentagon, we
demonstrate that the new MLBEM formulation reduces the CPU times by a factor of
nearly 700,000. Meanwhile, the memory requirements are reduced more than 16,000
times. These superior run-time and memory reductions compared to regular boundary
element methods are achieved while preserving the accuracy of the boundary element
solution. �DOI: 10.1115/1.1949648�

Keywords: Stokes Flows, Multilevel Boundary Element Methods

Introduction
Boundary element methods �BEM� have become one of the

most powerful and attractive tools to solve linear Stokes flow
problems because of their inherent accuracy and a boundary-only
discretization of the computational domain. A standard BEM tech-
nique requires two major steps to obtain a numerical solution.
During the first step, a global boundary element matrix is formed,
which necessitates an integration of the Stokeslets over each of
the boundary elements. The global matrix solution constitutes the
second step to obtain an unknown vector of boundary velocities
and tractions. Although the first step requires N2 operations, the
complexity of the second step is of order N3 when using Gauss
elimination. For relatively small numbers of degrees of freedom N
�e.g., N�104�, the regular boundary element methods are fast and
practical, even on a single-processor computer, since the integra-
tion over the boundary elements dominates over the matrix solu-
tion. However, most problems of practical importance, especially
in three dimensions, require fine boundary element meshes lead-
ing to very large numbers of degrees of freedom N�105. For
these boundary element discretizations, the conventional BEM al-
gorithms become prohibitively expensive even on state-of-the-art
supercomputers due to both memory and run-time requirements.

To extend the applicability of regular boundary element meth-
ods to larger numbers of degrees of freedom, several fast algo-
rithms have been proposed in the past two decades. These tech-
niques include Barnes-Hut �1,2�, wavelets �3,4�, fast multipole
�5–12�, and multilevel multi-integration �13–19� algorithms. The
fast multipole methods �FMM�, first introduced by Rokhlin �5�,
are currently the most popular of the fast algorithms. These reduce
the computational complexity of the matrix-vector multiplication
to order N ln N per iteration loop. When integral equations of the

second kind are considered, an overall complexity of iterative
solutions using the fast multipole algorithms is of order N ln N.

Although FMM and wavelet-based approaches have been ex-
tensively developed, multilevel multi-integration �MLMI� meth-
ods have not enjoyed a wide acceptance in computational practice
despite the great potential of the methods. The MLMI method was
proposed by Brandt and Lubrecht �13� for fast evaluation of multi-
integrals involving both smooth and singular-smooth kernels. The
MLMI requires that the kernels are asymptotically smooth, imply-
ing they can be accurately represented by the approximate kernel
functions from coarser meshes when the points of interest are
located at a some distance from the source points. This, in turn,
requires a correction only within the singularity zone, and thus
facilitates finer-to-coarser inter-level transfers with essentially no
loss in accuracy of the original BEM formulation. We note that the
modern MLMI algorithms utilize interpolating polynomials to
represent the kernel functions and are directly applicable to almost
all types of nonoscillatory kernels that exhibit asymptotical
smoothness �fortunately, most physically relevant kernels do!�.
This is in sharp contrast to the fast multipole algorithms, where
each type of kernel requires specific expansion.

Following the pioneering work �13�, Lubrecht and Ioannides
�14�, Polonsky and Keer �18,20� and Venner and Lubrecht �21�
extended the MLMI methods to the solution of elastohydrody-
namic lubrication and rough surface contact problems. Recently,
Grigoriev and Dargush �15� extended the MLMI algorithm to two-
dimensional solutions of the Laplace equation in a unit square
with mixed boundary conditions giving a rise to a multilevel
boundary element method �MLBEM�. Then, the authors extended
the MLBEM algorithm to the solution of the Helmholtz equation
using an integral form that involves asymptotically decaying os-
cillatory log-singular and strongly singular kernels �16�. Most re-
cently, the MLBEM algorithm was extended to solve steady two-
dimensional Stokes flows in more complex geometries �19�. The
multilevel algorithm permitted boundary element solutions using
as many as 16,392 degrees of freedom. While preserving the ac-
curacy of the original BEM solutions, the authors demonstrated a
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speed-up factor of �40 for the fast MLBEM algorithm compared
to a conventional Gauss elimination approach. The sevenfold
memory savings were attained for the multilevel algorithm.

Similar to our previous studies �15–17,19� on the MLBEM, we
consider a direct boundary element method for mixed Dirichlet-
Neumann boundary conditions, leading to boundary integral for-
mulations of the first kind. In general, this results in slow conver-
gence of the iterations as the boundary element meshes are refined
and no preconditioning is used. In this paper, we utilize C-cycle
multigrid iterations �22� to accelerate convergence. The alternative
approaches can include the use of other types of preconditioners
or the use of indirect boundary element formulations �23,24�.
However, discussions of these formulations go beyond the scope
of this paper.

In this presentation, we extend the MLBEM formulation �19� to
dramatically improve the performance of the numerical approach.
First, we preevaluate the singular corrections Ci

�k� for both matrix-
vector and matrix-transpose-vector multiplication. Next, the cen-
tered correction stencils are also preevaluated for an internal
source point and then applied to any other source point except for
the patch-end points. These two modifications in the original al-
gorithm lead to tremendous reductions in run-time and memory
requirements. In order to demonstrate the performance of the pro-
posed method, we consider an example problem with the exact
solution.

Multilevel Boundary Element Methods

Governing Equations and Integral Formulation. The steady
Stokes flow is governed by the well-known dimensionless conti-
nuity

�ui

�xi
= 0 �1�

and momentum

�
�2ui

�xj � xj
−

�p

�xi
= 0 �2�

equations. In Eqs. �1� and �2�, ui is the velocity of the flow, p is
the pressure, � is the viscosity. Both velocities ūi�x� on x��u and
tractions ti�x� on x��t may be specified as Dirichlet and Neu-
mann boundary conditions, respectively. Note that �u��t=0 and
�u��t=�, where the surface � bounds the computational domain
�. The corresponding integral form of the boundary value prob-
lem is given by

c���uk��� +�
�

ui�x�f ik�x − ��d��x� =�
�

ti�x�gik�x − ��d��x�

�3�

Here,

gik�x − �� =
1

4��
� yiyk

r2 − �ik ln r� �4�

and

f ik�x − �� = −
yiykyjnj

�r4 �5�

are two-dimensional Stokeslets representing single- and double-
layer potentials, respectively. In �3�, ti=	ijnj is the boundary trac-
tion, ni is the unit outward normal to the surface ��x� , � stands for
the collocation point ���, yi=xi−�i, and r=	yiyi is the distance
from the collocation point �i to the field point xi. The stress tensor
is defined as usual

	ij = �� �ui

�xj
+

�uj

�xi
� − p�ij

The geometric function c���=0.5 when the source point � is on a
smooth portion of the boundary.

Boundary Element Discretization. Let us introduce P smooth
nonoverlapping boundary patches �p for p=1,2 ,… , P and as-
sume that the variation of boundary velocity ui�x� and traction
ti�x� over every patch �p is smooth. Then, Eq. �3� may be written
as follows:

c���uk��� + 

p=1

P �
�p

ui�x�f ik�y�d��x� = 

p=1

P �
�p

ti�x�gik�y�d��x�

�6�

Introducing linear boundary elements over all boundary patches,
we discretize the integral equation �6� to the form

c���uk��� + 

p=1

P



n=1

Np

ui
�
�Fikmn

�
� = 

p=1

P



n=1

Np

ti
�
�Gikmn

�
� �7�

The algorithm of accurate evaluation of discrete coefficients Gikmn
�
�

and Fikmn
�
� is detailed in Ref. �19�. Here, to facilitate the MLBEM

algorithm, we apply boundary conditions and recast the discrete
integral equation �7� into the following matrix form:

A · � = b �8�

where � is the generalized vector of unknown velocities and trac-
tions, and b is the known force vector. Note that the global matrix
A of size N�N is dense.

Similar to our earlier work �15,16,19�, we utilize a biconjugate
gradient method �25� to solve the matrix equation �8�. Since this
iterative approach requires both matrix-vector A� and matrix
transpose-vector AT� multiplications at any iteration, we use fast
multilevel multi-integration �13� for these operations. In the fol-
lowing two subsections, we briefly outline the MLMI algorithm
that was detailed in Grigoriev and Dargush �19�, and discuss
modifications introduced in the fast matrix-vector operations that
allow tremendous savings in computational resources.

MLMI for Block-Matrix-Vector Multiplication. For every
patch �p, we introduce a sequence of L boundary element meshes
M0 , M1 , … , ML, where M0 is the finest level mesh and ML is the
coarsest boundary element mesh. For the sake of simplicity, our
consideration is restricted to uniform boundary element segmen-
tations over the patches; however, the mesh sizes on M0 can differ
from patch to patch. On the finest level mesh, the block-matrix-
vector multiplication A� can be represented as the following mul-
tisummation over every patch:

wi
�0� = h0


j=0

N0

Hi,j
�0�v j

�0� − Ri for i = 0,1, ¯ ,N0 �9�

In �9�, the multisummation is performed over index j representing
the set of boundary elements on M0 , h0 is the scaled boundary
element mesh size on the finest level mesh, v j

�0� stands for the
generalized vector of unknown velocities or tractions at any itera-
tion on the finest level mesh, and Hi,j

�0� is the generalized form of
assembled coefficients associated with Gikmn

�
� and Fikmn
�
� . Note that

mesh M0 has N0 linear boundary elements and N0+1 collocation
nodes. The patch end correction Ri in �9� ensures a smooth varia-
tion of the coefficients Hi,j

�0� within the patch on the finest level,
and its definition can be found in Ref. �19�.

Following the approach presented earlier by the current authors
�19�, we introduce a coarse-to-fine level interpolation of the gen-
eralized kernels that permits a fine-to-coarse-level transfer of the
multisummation �9�. Furthermore, owing to the asymptotic
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smoothness of the kernels, we restrict correction of the interpo-
lated kernels only to a small area at the vicinity of the source
point. In doing so, all corrections outside the singularity zone are
neglected because these are smaller than the error due to a bound-
ary element discretization. Therefore, the multi-integrals on any
coarse level k=1,2 ,… ,L can be written in the following form:

wi
�k� � hk


j=0

Nk

Hi,j
�k�v j

�k� + Ci
�k� �10�

Here, the total correction Ci
�k� includes both the singular and

patch-end corrections �19�. Note that although Eq. �10� allows an
evaluation of the multi-integral wi

�k� on any level mesh, the com-
plexity of the matrix-vector operation can be reduced to
O�N log N� if the multi-integral is recursively evaluated from the
coarsest to the finest levels using the following equation �19�:

wi
�k� � ��̂k+1

k w.
�k+1��i + hk 


�i−j��m

Nk

�Hi,j
�k� − Ĥi,j

�k��v j
�k� + Ci

�k� − Ĉi
�k�

�11�

We should note that the evaluation of the correction Ĉi
�k� requires

a sequential evaluation of coefficients Ci
�k� for stencil nodes adja-

cent to the current source node i. Obviously, the computational
load as well as storage requirements are reduced significantly pro-
vided that the corrections Ci

�k� are preevaluated. Moreover, note
that these preevaluations are not needed to be performed for all
levels. This approach recently implemented for heat diffusion
problems �15� leads to a dramatic reduction of the computational
complexity compared to the original developments for the acous-
tics problems �16� and steady Stokes flows �19�.

In this study, the computer requirements are reduced even to a
more dramatic extent beyond those achieved in our earlier re-
search on steady heat diffusion �15�. Here, the centered correction
stencils are preevaluated for an internal source point and then
applied to any other source point for which the correction stencil
is not affected by the patch ends. Indeed, several source points
close to the patch ends require reevaluation of the individual cor-
rection stencils. However, as the boundary mesh gets refined, the
additional computations become insignificant.

MLMI for Block-Matrix-Transpose-Vector Multiplication.
A block-matrix-transpose-vector multiplication on the finest level
mesh M0 can be given by the following multisummation over
each patch:

wj
�0� = h0


i=0

N0

Hi,j
�0�vi

�0� − Rj for j = 0,1, ¯ ,N0 �12�

Note that the summation in �12� is now performed over index i
representing the collocation point �i. In �12�, the patch-end cor-
rections Rj on the finest level boundary element mesh are again
defined in Ref. �19�. Following our earlier work �19�, we transfer
the multisummation �12� defined on level k=0 to any coarse level
k�0 as follows:

wj
�k� � hk


i=0

Nk

Hi,j
�k�vi

�k� + Cj
�k� for k = 0,1, ¯ ,L �13�

The total correction Cj
�k� involving the patch-end corrections Rj

and a sum of singular corrections from each finer level can also be
found in �19�. Although the multi-integrals wj

�k� can be evaluated
using expression �13� on each level, we perform the fast multi-
summation only on the coarsest level boundary element mesh ML

wj
�L� � hL


i=0

NL

Hi,j
�L�vi

�L� + Cj
�L� �14�

as the direct application of �14� to the finer levels k�L will re-
quire even more operations than the original multisummation �12�
on the finest level mesh. The multi-integrals �14� on the finer level
mesh points can be represented as follows:

wj
�k� � ��̃k+1

k w.
�k+1�� j + hk 


�i−j��m

Nk

�Hi,j
�k� − H̃i,j

�k���i
�k� + Cj

�k� − C̃j
�k�

�15�

Again, we preevaluate C̃j
�k� and the centered correction stencils to

dramatically reduce the complexity of the computations similar to
the fast matrix-vector operation described above.

C-Cycle Multigrid. Since the biconjugate gradient method �25�
used in this work requires O�N1/2� iterations on the boundary el-
ement mesh M0, we utilize the multigrid technique proposed by
Brandt �22� to accelerate the convergence. Although several mul-
tigrid algorithms are readily available, we restrict our consider-
ation to the C-cycle multigrid �22�, as it provides good conver-
gence acceleration for the problems considered in this
presentation.

Numerical Results

Introduction. The MLBEM code developed earlier for the fast
solution of the heat diffusion �15�, acoustics scattering �16�, and
Stokes flows �19� has been extended to accommodate the modifi-
cations outlined above. All runs have been performed on a Sun
Ultra-Enterprise workstation with quadruple UltraSparc-II 336
MHz processors. In this presentation, we consider an example
problem for steady Stokes flow that possesses an analytical solu-
tion. The model problem is formulated in a pentagon of irregular
shape that is split into five boundary patches. We consider two
multilevel boundary element methods, namely, one presented ear-
lier in �19� and the algorithm modified here. The run-time and
memory requirements for both MLBEM formulations are investi-
gated for the model problem to highlight an exceptional perfor-
mance of the fast MLBEM formulation proposed in this paper.

Example Problem. We consider Stokes flow in the pentagonal
domain of irregular shape as shown in Fig. 1. The exact velocity

Fig. 1 Problem definition for the irregular pentagon domain
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and pressure fields satisfying the governing equations �1� and �2�
are defined as follows:

u1�x1,x2� = cos�kx1�
exp�kx2�
exp�k�

+ sin�kx2�
exp�kx1�
exp�k�

�16�

u2�x1,x2� = sin�kx1�
exp�kx2�
exp�k�

+ cos�kx2�
exp�kx1�
exp�k�

�17�

p�x1,x2� = const �18�
respectively. For the boundary value problem, we specify veloci-
ties on �u, and tractions on �t directly from �16�–�18�. Note that
�u includes two boundary patches, while �t has three patches
�Fig. 1�. In this study, we consider high wave parameter k
=103�; thus, the solution is very oscillatory in space along both
directions and involves extremely sharp velocity gradients at x1
→1 and x2→1. Therefore, very sharp boundary element discreti-
zations are needed to obtain a proper resolution.

An L error norm u is used to monitor the numerical solution
error throughout the paper. Thus,

u = max�u�num� − u�ex�� for � � �t. �19�

We note that one of our objectives is to demonstrate that the
multilevel BEM formulation allows extremely fast solutions,
while retaining the same level of accuracy as the direct boundary
element method on mesh M0. Figure 2 shows the numerical error
norm u with respect to the total number of degrees of freedom N
on M0. We emphasize that, for a relatively small number of de-
grees of freedom, both multilevel boundary element methods pre-
sented earlier �19� and in this paper result in the same accuracy as
the direct Gauss elimination and the direct application of the it-
erative BCGM algorithm. Note that the direct BEM algorithms are
not applicable to boundary element discretizations of Np=2048 or
finer due to memory restrictions. As evident from Fig. 2, much
finer boundary element meshes are needed to obtain sufficiently
accurate numerical solutions for k=103 �. We emphasize that the
MLBEM approach permits very fine mesh resolutions. On the
current workstation, we have been able to obtain solutions on the
BEM mesh as fine as Np=131,072 on M0 resulting in as many as
1,310,730 degrees of freedom. Meanwhile, the multilevel bound-
ary element method presented in �19� permits numerical solutions
with only Np=4096 elements or coarser per patch. Note that the
MLBEM algorithms using the linear boundary elements provide a

quadratic rate of convergence with respect to the mesh size for the
entire range of mesh discretizations; that is, error of order O�h0

2�
for the velocity vector �Fig. 2�.

Next, we investigate the MLMI errors for six-noded interpola-
tion stencils considered in this paper. These centered and noncen-
tered stencils lead to quintic interpolation functions that are pre-
sented in �16�. Figure 3 shows the MLMI errors u for different
level transfers for meshes involving Np=8192 and Np=16,384
boundary elements per patch on M0. The number of boundary
elements on the coarsest MLMI levels is shown in the parentheses
with the legends. We should note that the MLMI approach allows
accurate results even when the number of correction points within
the singularity zone m is significantly fewer than the optimal val-
ues given by Brandt and Lubrecht �13�. However, the accuracy of
the MLMI approach deteriorates quickly when m becomes too
small �Fig. 3�. No converged solutions are possible when the num-
ber of correction points is insufficient to retain accuracy of the
solution. Note again that for both mesh discretizations, the con-
ventional BEM methods are not realizable on the workstation due
to memory requirements. Also, the coarsest level mesh of Np
=64 boundary elements are too coarse to provide any meaningful
results for k=103 �.

Figure 4 presents the number of points m that should be re-
tained in the singular zone to preserve the accuracy of the MLMI
transfers. For the example problem considered in this paper in-
volving a very oscillatory solution, the number of correction
points is significantly fewer than the optimal number of points for
the quintic interpolation stencils recommended by Brandt and Lu-
brecht �13�. We note that m is greatly dependent on the smooth-
ness of the problem. Generally, the smoother the problem, the
greater the number of singular points needed to maintain the ac-
curacy of the MLBEM algorithm. For the hypothetical case of
linear temperature fields, the MLBEM formulation using linear
boundary elements would require the singular zone to extend to
include all nodal points. Fortunately, only a single linear boundary
element per patch will provide a solution with machine precision
for this kind of problem and fast methods are not needed. On the
other hand, when the solution has greater variability, m may be
maintained at moderate levels with no loss in accuracy.

In this presentation, we consider multigrid method results when
the initial vector on mesh M0 is obtained using the interpolation of
the coarsest multigrid level BEM mesh solution since this pro-
vides us with extremely rapid convergence. The evolution of the
error norm u with respect to the iterations on the M0 -mesh is
shown in Fig. 5. Here, we consider one-, two-, and three-level

Fig. 2 Convergence of the numerical errors for the conven-
tional and fast boundary element methods with the boundary
mesh refinement

Fig. 3 MLMI errors with respect to the number of singular
zone points
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multigrid iterations. For one-level multigrid �i.e., �=1�, the nu-
merical error reduces dramatically for the first two iterations on
the finest level mesh reaching the desired level in just two
C-cycles. Then, the numerical error remains on the desired level if
the iterations are continued. For �=2 and �=3, the numbers of
iterations required to reduce the error norm to the desired level are
slightly higher �Fig. 5�. Additionally, the performance of the mul-
tigrid for ��1 degrades slightly compared to a single-level mul-
tigrid iterations due to increased number of iterations on the
coarser multigrid levels. Thus, we adopt �=1 hereafter in this
work to analyze the performance of the MLBEM algorithm.

Figure 6 suggests that almost 100 iterations on the finest level
mesh are needed for a relatively coarse boundary element discreti-
zation when using the C-cycle multigrid. As the finer BEM
meshes are considered, the number of multigrid cycles reduce
dramatically and become independent of the mesh discretization
for fine meshes. Note that starting from Np=32,768 boundary
elements per patch, only two C-cycles are required to reduce the
numerical errors to the desired levels �Fig. 6�. Meanwhile, the

non-multigrid solutions require dramatically larger number of it-
erations with iteration counts following nearly the anticipated
O�N1/2� behavior. Again, the MLBEM algorithm presented in �19�
allows to obtain solutions only for meshes with Np=4096 ele-
ments or coarser per patch. Note that the iteration numbers for
both fast multilevel algorithms are the same, as expected �Fig. 6�.

Finally, we compare the CPU times and memory requirements
for the conventional and fast multilevel boundary element meth-
ods for the example problem. Figures 7 and 8 show that the fast
multilevel boundary element method developed and presented in
�19� reduces run-time and memory requirements approximately
by an order of magnitude compared to the conventional BEM
formulations for N�4096. Meanwhile, the current MLBEM ap-
proach requires almost two orders of magnitude less CPU times
and memory even for a moderate number of degrees of freedom.
For larger values of N, the efficiency of the fast method increases
even further as anticipated. At N=10,250, a speed-up factor of
approximately 88, and 54 is obtained for the fast algorithm com-
pared to a conventional Gauss elimination and BCGM ap-
proaches, respectively. Note that for larger number of degrees of

Fig. 4 The number of singular zone points m needed to retain
a desired level of accuracy

Fig. 5 Convergence history for mesh of Np=16,384 boundary
elements for various number of multi-grid levels

Fig. 6 The number of iterations on the finest level mesh to
achieve convergence; One-level multi-grid versus no multi-grid

Fig. 7 Comparisons of the CPU requirements for the conven-
tional BEM and MLBEM algorithms
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freedom on the finest level mesh, the conventional formulations
are not even realizable on the current workstation when using
double precision arithmetic. Thus, for illustration purposes, we
have extrapolated the CPU and memory requirements for the con-
ventional algorithms assuming that the matrix solution dominates
its formation �Fig. 7 and 8�. Furthermore, we assume that the
BCGM approach will converge in order O�N1/2� iterations. For
N=1,310,730 involving a boundary element mesh 128 times
finer than the finest BEM mesh possible for the conventional al-
gorithms, the speed-up factors are 685,632 and 185,364 for Gauss
elimination and BCGM approaches, respectively. We note that the
Gauss elimination would require almost three millennia to provide
a solution for this mesh, whereas the current MLBEM approach
requires slightly more than 36 hr on the workstation. Finally we
should like to emphasize that the conventional methods would
require more than 10 Tb of memory to store the global matrix
using double-precision arithmetic. Accordingly, the MLBEM re-
duces this burden by a factor of 16,384 and requires just 647 Mb
of memory which, of course, can easily be stored in core.

Conclusions
A multilevel boundary element solver �19� recently developed

for Stokes flows in two-dimensions has been extended to provide
an extremely robust, efficient, and fast computational tool. We
introduced two important modifications into the code, namely,
implemented a preevaluation of the total correction from the fine
level meshes, and facilitated fast matrix-vector multiplications us-
ing a sliding correction stencil for the discrete coefficients. These
amendments have led to dramatic improvements of the modified
multilevel algorithm and permitted solutions on boundary element
meshes that are 32 times finer than those possible using our pre-
vious formulation �19�.

In this study, we investigate performance of the MLBEM on a
model Stokes flow problem. The numerical example shows con-
servation of numerical accuracy even for multilevel transfers. We
compare the CPU time and memory requirements for the fast
multilevel and conventional boundary element methods and dem-
onstrate exceptional performance of the fast boundary element
method. We have been able to model the example Stokes flow
problem involving more than one million degrees of freedom on a
workstation, for which we achieved almost a million-fold
speed-up compared to the direct Gauss elimination algorithm.
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Nomenclature
g , f � Stokeslets

h � boundary element mesh size
m � number of singular correction points
n � unit outward normal
p � pressure
t � traction

u � velocity of the flow
w � multi-integral
x � Eulerian coordinate
y � relative distance from source point
C � total correction

G , F � coefficients
H � generalized coefficients
L � number of MLMI levels

M � boundary element mesh
N � number of degrees of freedom
P � number of boundary patches
R � patch end correction
� � domain boundary
� � domain of interest

u � velocity error norm
	 � stress tensor
� � viscosity
� � number of multigrid levels
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A Meshless Local Petrov-Galerkin
Method for Fluid Dynamics and
Heat Transfer Applications
The meshless local Petrov-Galerkin method has been modified to develop a meshless
numerical technique to solve computational fluid dynamics and heat transfer problems.
The theory behind the proposed technique, hereafter called “the meshless control volume
method,” is explained and a number of examples illustrating the implementation of the
method is presented. In this study, the technique is applied for one- and two-dimensional
transient heat conduction as well as one- and two-dimensional advection-diffusion prob-
lems. Compared to other methods, including the exact solution, the results appear to be
highly accurate for the considered cases. Being a meshless technique, the control vol-
umes are arbitrarily chosen and possess simple shapes, which, contrary to the existing
control volume methods, can overlap. The number of points within each control volume
and, therefore, the degree of interpolation, can be different throughout the considered
computational domain. Since the control volumes have simple shapes, the integrals can
be readily evaluated. �DOI: 10.1115/1.1949651�

Keywords: Meshless, Control Volume, Advection-Diffusion, Least-Squares

Introduction
The finite element and finite volume methods �1–3� are among

the most frequently used numerical techniques in computational
fluid dynamics and heat transfer applications that require mesh
generation on the computational domain. Generating a good mesh
is a prerequisite to obtaining accurate numerical solutions. An
acceptable mesh should have no excessively distorted elements
and no elemental high aspect ratio. These and other constraints
render the mesh generation, despite recent advances in this field
�4�, still arduous and problematic.

To circumvent these difficulties, considerable research has been
devoted in recent years to develop numerical methods for solving
differential equations that do not require mesh generation. Among
these so-called meshless techniques is “the diffuse element
method” proposed by Nayroles et al. �5� in which a collection of
nodes and a boundary description are sufficient to obtain the
Galerkin equations. However, in this method an auxiliary grid is
still necessary to evaluate the integrals that result from applying
the Galerkin method to the differential equations. Subsequently,
Belytschko et al. �6� and Lu et al. �7� proposed the element-free
Galerkin method in which a regular cell structure is employed as
an auxiliary grid and high-order quadratures are used to evaluate
the integrals on this background grid. An extensive review of
these mesh-free techniques can be found in Belytschko et al. �8�.

Based on the work of Batina �9�, Oňate et al. �10,11� introduced
another category of meshless techniques called “the finite point
method.” In this method, a collection of points is selected in the
domain and an interpolation cloud is then chosen around each of
the points. Subsequently, the interpolations of the unknown func-
tion within the clouds are substituted into the weighted residual
formulation of the problem and the resulting integrals are evalu-
ated using the point collocation. Hence, no background grid is
needed, and the method is truly meshless.

Recently, two other meshless schemes—the meshless local
boundary equation method, and the meshless local Petrov-

Galerkin method—have been proposed for solving differential
equations �12–17�. Both methods employ a local weak form of the
differential equation over a local subdomain and the shape func-
tions from the moving least-squares interpolation together with
numerical quadrature to obtain the discretized equations. A com-
prehensive review of the meshless methods, in general, and the
meshless local Petrov-Galerkin �MLPG� method, in particular, can
be found in two recent monographs by Atluri and Shen �18� and
Atluri �19�. These works focus on various interpolation schemes,
different types of test functions, as well as discretization of bound-
ary integral equations. A number of three-dimensional solid me-
chanics problems and their solutions with singularities are also
considered in these works.

In recent years, other truly meshless methods have been pro-
posed, among them are the method of finite spheres by De and
Bathe �20�, the local point interpolation method by Gu and Liu
�21�, the local radial point interpolation method by Liu and Gu
�22�, and the regular hybrid boundary method by Zhang et al.
�23,24� and Zhang and Yao �25�.

In the method of finite spheres, subdomains of spherical shapes
are generated around every point in the domain. Subsequently, the
dependant variables are interpolated within the spheres using the
partition-of-unity paradigm �26�. The discretized equations are ob-
tained by substituting the interpolations in the Galerkin weak form
of the partial differential equations for the subdomains. Some im-
proved numerical integration schemes for the method of finite
spheres have been presented in Ref. �27�.

In the local point interpolation method, which is based on the
MLPG, a technique is proposed to construct polynomial interpo-
lation with Kronecker delta property for a group of arbitrarily
distributed points. Therefore, contrary to the other meshless
schemes that employ moving least-squares interpolation for the
dependent variable, in this method essential boundary conditions
can be applied rather easily. On the other hand, the regular hybrid
boundary node method, which is based on coupling a modified
functional with the moving least-squares approximations, only re-
quires discrete nodes construction on the boundary of a domain.

In this study, an amended meshless local Petrov-Galerkin
method, the meshless control volume method �MCVM�, is intro-
duced for solving computational fluid dynamics and heat transfer
problems. In this method, similar to the finite point method
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�FPM�, a collection of points is chosen in the domain. Subse-
quently, a control volume is generated around each of the points.
The control volumes have simple shapes and, contrary to the usual
control volume methods �28,29�, they can intersect each other and
overlap. Substituting the interpolation of the unknown function
within each control volume into the weak form of the differential
equation and using unity as the test function yield the discretized
equation of a control volume. Because of the simple shapes of the
control volumes, the integrals in the discretized equation are eas-
ily evaluated. Among the main differences between the MCVM
and the other meshless techniques is that in the MCVM there is
neither a need for an auxiliary grid nor for numerical integration
on the auxiliary grid. Also, the MCVM, unlike the existing mesh-
less techniques, such as the FPM, possesses flux conservation
properties.

Meshless Control Volume Method
To develop the theory of the MCVM, consider a bounded re-

gion � with the boundary �=�g��h in the two-dimensional
space �Fig. 1�. The transient convection-diffusion equation in �
written in terms of temperature, T�x� , t�, is

T,t + �� · �u�T� = ��2T + S �1�

where u� is the divergence-free velocity field, �=K /�Cp, and S is
a source term. Boundary and initial conditions for Eq. �1� are

T = Tg on �g �2�

n̂ · �K�� T� + H�T − T̃� = q on �h �3�

T�x�,0� = T0�x�� in �̄ �4�

where Tg is a given function of position, T̃ is the free-stream
temperature, n̂ is the unit normal to �h, H is the heat transfer
coefficient, q is the known heat flux, T0�x�� is the given initial

temperature, and �̄=���.
In this MCVM, similar to the other meshless techniques

�10,11�, a collection of points is selected in the domain. Subse-
quently, a control volume is generated around each of the points.
The control volume is a line segment in the one-dimensional
space and can be a circle or rectangle in the two-dimensional
space. A typical circular control volume �i with radius Ri and
boundary �i, which is generated around point i, is shown in Fig. 1.
The number of points belonging to a control volume and their
distribution can, in general, vary from one control volume to an-
other, and, contrary to the commonly used control volume tech-
niques �29�, in this method control volumes can intersect one
another and overlap.

Multiplying Eq. �1� by the weighting function w, integrating the
resulting expression over �i, and employing the integration by
parts yields

�
�i

wT,td� −�
�i

�� w · �u�T − ��� T�d� +�
�i

w�u�T − ��� T� · n̂d�

=�
�i

Swd� �5�

Choosing a weighting function equal to unity in Eq. �5� results in
the following equation for a control volume �i, which has no
boundary in common with the domain boundary:

�
�i

T,td� +�
�i

�u�T − ��� T� · n̂d� =�
�i

Sd� �6�

In case the boundary �i of the control volume �i has an intersec-
tion with �h, the equation of the control volume changes to

�
�i

T,td� +�
�i

u�T · n̂d� −�
�i��h

H�T − T� � + q

�Cp
d�

−�
�i−�i��h

�
�T

�n
d� =�

�i

Sd� �7�

where �i��h represents the intersection of �i with �h.
To obtain the discretized equation of the control volume �i,

which contains n points, the unknown temperature field is ap-
proximated within �i by �10�

T�x�,t� � T̄�i��x�,t� = �
l=1

m

Pl�x���l�t� = PT�x����t� �8�

where ��t�= ��1�t� ,�2�t� , . . . ,�m�t��T and the elements of vector
P�x�� are, in general, monomials. For example, in a one-
dimensional case for m=3, the vector P�x�� is given by �1,x ,x2�T,
and in a two-dimensional case for m=3, it is expressed as
�1,x ,y�T.

Setting the approximation �8� equal to the value of the function
T�x� , t� at the n points belonging to the control volume yields

T = �
T1

T2

]

Tn

	 = �
P1

T

P2
T

]

Pn
T
	� = C� �9�

where Tj =T�x� j , t� is the magnitude of T�x� , t� at the point x� j and
P j =P�x� j�. If the number of points belonging to the control volume
n is equal to the number of monomials of the vector P�x��, m, the
performed interpolation will be exact at the points �i.e., it will be
equal to the value of the unknown function at the points�, and the
vector � will be given by

� = �
P1

T

P2
T

]

Pn
T
	

−1

T = C−1T �10�

The approximation T̄�i��x� , t�, in this case, is expressed as

T̄�i��x�,t� = �
j=1

n

� j
�i�Tj�t� �11�

where � j
�i��x��, j=1�1�n, are the usual interpolation functions �i.e.,

Lagrange polynomials� and Tj, j=1�1�n, are the nodal values of
the unknown function at the points. The interpolation functions,

Fig. 1 Domain � with two circular control volumes
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which satisfy the standard condition � j
�i��x�l�=� jl, � jl being the

Kronecker delta, are given by �30�

� j
�i��x�� = �

l=1

m

Pl�x��Clj
−1, j = 1�1�n �12�

If the number of points belonging to the control volume is greater
than the number of monomials of the vector P�x�� �i.e., n�m�, the
approximation will be obtained using a least-squares fit. The ap-
proximation is still given by �11�, however, the interpolation func-
tions are now written as follows �30�:

� j
�i��x�� = �

l=1

m

Pl�x��Dlj
−1, j = 1�1�n �13�

where

D−1 = A−1B, A = �
j=1

n

P�x� j�PT�x� j� and

B = �P�x�1�,P�x�2�, . . . ,P�x�n��

Substituting the approximation T̄�i��x� , t� into Eq. �6� or �7�
yields the discretized equation for �i. Using the same procedure
for every control volume yields the system of the discretized
equations for all the points within the domain. Solving the system
of algebraic equations gives the unknown variables at the points.
The following examples illustrate the new method implementa-
tion.

Transient Conduction and Potential Flow Application of
the Method

Consider a one-dimensional transient heat conduction equation
given by

T,t = �T,xx 0 � x � 1 �14a�

T�0,t� = 0 �14b�

T�1,t� = 0 �14c�

T�x,0� = x�1 − x� �14d�
The analytical solution of the equation is �31�

T�x,t� = �
n=1,3,5

	 
 2

n

�3

sin�n
x�e−n2
2�t �15�

To solve Eqs. �14a�–�14d� with the MCVM, a collection of N
equally spaced points is selected in the domain. A control volume
is generated around each of the points. Each control volume, in
this case, contains three points, Fig. 2�a� for uniform and Fig. 2�b�
for nonuniform point distribution. The equation of the control vol-
ume �i is given by

�

�t�
xi−1

xi+1

T�x,t�dx = ��T,x�xi+1,t� − T,x�xi−1,t�� �16�

Using a second-order approximation T̄�i��x , t�=� j=i−1
i+1 � j

�i��x�Tj�t�
within the control volume in Eq. �16� and discretizing the time
derivative by a first-order implicit scheme, yields


1

3
−

2��t

�x2 �Ti−1
n+1 + 
4

3
+

4��t

�x2 �Ti
n+1 + 
1

3
−

2��t

�x2 �Ti+1
n+1

=
1

3
Ti−1

n +
4

3
Ti

n +
1

3
Ti+1

n �17�

where �x is the distance between two consecutive points �for the
uniform case�, �t is the time step, and n and n+1 represent two

consecutive time steps. Different methods have been developed to
impose the essential boundary conditions while using least-
squares interpolations for the trial functions �10,16�. Following
the scheme used in �10�, in this work Ti�xj� is set equal to Tg�xj�
at the points located on �g.

Similar discretized equations are obtained for other control vol-
umes whose solutions yield Tj, j=1�1�N. In case �i contains five
points and a fourth-order approximation of the temperature is em-
ployed, the discretized equation will be given by

1

�t �
j=i−2

i+2

Tj
n+1
�

i−2

i+2

�� jdx − �� j,x�i−2
i+2� =

1

�t �
j=i−2

i+2

Tj
n �18�

Figure 3 shows the change of temperature with time at x=0.5
for �=1 obtained by the MCVM using control volumes with three
points and second-order approximation together with the analyti-
cal solution and the numerical results obtained by the FVM �2�.
Eleven equally spaced points have been selected in the domain
with �t=0.001 s. It is seen from the figure that the results are
quite accurate even for the small number of control volumes gen-
erated in the domain, with a maximum relative error of �3%.

Figure 4 shows the temperature distribution in the domain at
three different times for the one-dimensional transient conduction
problem. Three types of control volumes, namely, control volumes
containing three points with second-order approximation, contain-
ing five points with third-order least-squares, and fourth-order ex-

Fig. 2 One-dimensional control volumes for „a… uniform point
distribution with second-order interpolation function and „b…

nonuniform point distribution

Fig. 3 Temperature variation with time at x=0.5 for the one-
dimensional transient conduction with uniform point
distribution
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act approximations have been employed. Other conditions are
similar to those used in Fig. 3. As Fig. 4 shows, the results ob-
tained by the MCVM, FVM, and the exact solution coincide. The
percent relative error for the cases shown in Fig. 4 for �t
=0.001 s are presented in Table 1. From Fig. 4 and the results
illustrated in Table 1, the MCVM accuracy is apparent. Obviously,
the magnitude of �t governs the percent error for the MCVM as
well as FVM with respect to the analytical solution.

Equation �17� has the following modified equation:

�T

�t
− �

�2T

�x2 = 
��t −
�x2

6
� �4T

�x4 + O��t2,�t2�x2� �19�

which shows that Eq. �17� is, in the limit, consistent with Eq.
�14a�. On the other hand, an implicit stable scheme has been
employed to discretize the time derivative. Therefore, according
to the Lax’s equivalence theorem �32,33�, convergence is assured.

To analyze the effect of nonuniformity in the size of the control
volumes on the results, 11 unequally spaced points have been
selected within the domain �Fig. 2�b��. In this regard, Fig. 5 shows
the temperature distribution at three different times for the one-
dimensional transient conduction for which control volumes con-
taining three points with the second-order approximation have
been employed. Comparing Fig. 4 to Fig. 5, the results show
similar accuracies.

Next, the following two-dimensional transient heat conduction
equation in a square domain is considered:

T,t = ��2T in � = �1 � 1� �20a�

T�0,y,t� = 0, T�1,y,t� = 0 �20b�

T�x,0,t� = 0, T�x,1,t� = 0 �20c�

T�x,y,0� = �x − x2��y − y2� �20d�
The exact solution of Eqs. �20a�–�20d� is �31�

T�x,y,t� = �
m=1,3,5

	

�
n=1,3,5

	
64

�m
�3�n
�3 sin�m
x�

�sin�n
y�e−��m2+n2�
2t. �21�
To solve the equation by the MCVM, a collection of regular

square 11�11 points is selected in the domain. A typical control
volume containing nine points, which is used in this case, is
shown in Fig. 6�a� for uniform and Fig. 6�b� for nonuniform point
distribution. Using biquadratic approximation and discretizing the
time derivative by a first-order implicit scheme yields the follow-
ing discretized equation for an internal control volume:

�
j=1

4 
1 −
12��t

h2 �Tij
n+1 + �

j=5

8 
4 −
12��t

h2 �Tij
n+1

+ 
16 +
96��t

h2 �Ti
n+1 = �

j=1

4

Tij
n + 4�

j=5

8

Tij
n + 16Ti

n �22�

where h �h=�x=�y� is the distance between two consecutive
points in either x or y direction �for the uniform case�.

Figure 7 shows the temperature distribution in the domain ob-
tained by the MCVM at time equal to 0.025 s for �=1. A regular
square of 11�11 points has been selected in the domain, and
control volumes containing nine points with biquadratic approxi-

Fig. 4 Temperature distribution in the domain at three differ-
ent times for the one-dimensional transient conduction with
uniform point distribution

Table 1 MCVM and FVM percent relative error comparison for the one-dimensional conduction „uniform point distribution…

x

MCVM

FVM3 points–second order 5 points–fourth order 5 points–third order

T=0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 0.33 0.65 0.97 0.51 1.01 1.52 0.29 0.25 0.21 1.30 2.60 3.93
0.2 0.33 0.65 0.97 0.47 0.98 1.49 0.05 0.09 0.13 1.29 2.60 3.93
0.3 0.33 0.65 0.97 0.47 0.98 1.49 0.22 0.26 0.30 1.29 2.60 3.93
0.4 0.33 0.65 0.97 0.49 1.00 1.51 0.07 0.03 0.01 1.29 2.60 3.93
0.5 0.33 0.65 0.97 0.50 1.01 1.52 0.09 0.13 0.17 1.29 2.60 3.93
0.6 0.33 0.65 0.97 0.49 1.00 1.51 0.17 0.21 0.25 1.29 2.60 3.93
0.7 0.33 0.65 0.97 0.47 0.98 1.49 0.01 0.02 0.06 1.29 2.60 3.93
0.8 0.33 0.65 0.97 0.47 0.98 1.49 0.38 0.35 0.31 1.29 2.60 3.93
0.9 0.33 0.65 0.97 0.51 1.01 1.52 1.40 1.36 1.32 1.30 2.60 3.93
1 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 5 Temperature distribution in the domain at three differ-
ent times for the one-dimensional transient conduction with
nonuniform point distribution
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mation have been used. The temperature distribution along the
y-axis at x=0.5 and for time equal to 0.025 s obtained by the
MCVM is shown in Fig. 8. Other conditions are similar to those in
Fig. 7. The time step �t is again set to be 0.001 s. As the figure
shows, for the two-dimensional case similar to the one-
dimensional, the MCVM, FVM, and exact solution coincide with
one another. The percent relative error in Table 2, however, for
both the MCVM and FVM are mainly �1%. This insignificant
error for numerical and engineering purposes, in turn, approves
the MCVM accuracy.

The modified equation of the discretized Eq. �22� is

�T

�t
− ��2T = 
�

�t

2
−

h2

12
�
 �4T

�x4 +
�4T

�y4� + ��t
�4T

�x2�y2

+ O��t2,h2�t� �23�
Considering the above modified Eq. �22� is, in the limit, consistent
with the original differential equation �Eq. �20a��. Furthermore, an
implicit stable scheme has been employed to discretize the time
derivative. Hence, according to the Lax’s equivalence theorem the
method is convergent �32,33�.

Next, the two-dimensional transient heat conduction problem is
solved using the nonuniform point distribution. The temperature
distribution along the y-axis at x=0.5 and for time equal to
0.025 s for the nonuniform point distribution is shown in Fig. 9.
An overall comparison of Figs. 8 and 9 show a higher accuracy
for the nonuniform point distribution.

As a final example in this section, fluid flow over a square
block �potential flow� is considered. Figure 10 shows the domain
and the point distribution using the control volume similar to the
one in Fig. 6 for this case. The streamlines profile obtained
through the MCVM using the nonuniform point distribution for
this potential flow is illustrated in Fig. 11.

Fig. 6 Domain and a typical control volume for the two-
dimensional problems with „a… uniform point distribution „b…

nonuniform point distribution

Fig. 7 Temperature distribution in the domain at t=0.025 s for
the two-dimensional transient conduction with uniform point
distribution

Fig. 8 Temperature distribution along the y-axis at x=0.5 for
the two-dimensional transient conduction with uniform point
distribution

Table 2 MCVM and FVM percent relative error comparison for
the two-dimensional conduction „uniform point distribution at
x=0.5…

y MCVM FVM

0 0 0
0.1 0.03 1.14
0.2 0.06 0.97
0.3 0.09 0.78
0.4 0.11 0.64
0.5 0.12 0.59
0.6 0.11 0.64
0.7 0.09 0.78
0.8 0.06 0.97
0.9 0.03 1.14
1 0 0
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Convection-Diffusion, Application of the Method
As a further implementation of the method, consider the

MCVM used to solve differential equations with non-self-adjoint
operators, such as those that generally occur in convective heat
transfer and fluid dynamics. A typical example is the following
one-dimensional advection-diffusion equation:

T,x̄ = �1/Pe�T,x̄x̄ 1 � x̄ � 0 �24a�

T�x̄ = 0� = 0, T�x̄ = 1� = 1 �24b�

where Pe=�cuL /K is the Peclet number, u is the fluid velocity, L
is the length of the domain, and x̄=x /L. The analytical solution of
Eqs. �24a� and �24b� is �29�

T�x̄� = �1 − ePex̄�/�1 − ePe� . �25�
Applying the MCVM to Eqs. �24a� and �24b� yields the following
discretized equation for a control volume �i containing three
points with second-order approximation:


 1

Pē
+

1

2�Ti−1 −
2

Pē
Ti + 
 1

Pē
−

1

2�Ti+1 = 0 �26�

where Pē=�cu�x /K is the local Peclet number. Equation �26� is

not stable for Pē�2, and severe oscillations may appear in the
numerical solutions under these circumstances. There exist differ-
ent standard techniques to stabilize discretized form of the
convection-diffusion equation in the finite difference, finite ele-
ment, and finite volume methods �28,29,34,35�.

To stabilize the numerical solution in this study, a balancing

diffusion k̄ is added to Eq. �24a�, whereupon the discretized equa-
tion for �i changes to


 1

Pē
+

1

2
+

k̄

�x
�Ti−1 − 
 2

Pē
+

k̄

�x
�Ti + 
 1

Pē
−

1

2
+

k̄

�x
�Ti+1 = 0

�27�

The magnitude of k̄ is now evaluated such that the solution of Eq.
�27� be nodally exact. To this end, the solution of Eq. �27� is
considered as a term of the Fourier series, Tj =eiKmLx̄j, with Km
being the wave number. Substituting the Fourier series solution
into Eq. �27� and setting the truncation error to zero yields the

optimal k̄ for a control volume with three points and second-order
approximation

k̄ =
�x

2 coth
Pē

2
� −

2

Pē
� �28�

It should be noted that the above k̄ is similar to the optimal
balancing diffusion, which has been obtained previously by
Brooks and Hughes �34� and Lewis et al. �35�. Now, using a
similar approach, the following new expression is obtained for the
optimal balancing diffusion for the control volumes with five
points and fourth-order approximation

k̄

�x
=

14�cosh�2Pē� − 1� − 32�cosh�Pē� − 1� − 6�Pē�sinh�2Pē�

32�cosh�Pē� − 1� − 14�cosh�2Pē� − 1�
�29�

Figure 12 shows the numerical solution of Eqs. �24a� and �24b�
obtained by the MCVM for a range of Peclet numbers together
with the analytical solution in each case. Twenty-one equally
spaced points have been selected in the domain, and control vol-
umes containing three points with a second-order approximation
have been used in each case. It is clear from the figure that the
numerical results, in all the cases, are coincident with the exact
solutions.

To analyze the effect of changing the number of points and
varying the order of approximation within control volumes on the
numerical results, the solution was obtained using control vol-
umes with five points and fourth-order approximation. The results
for 21 equally spaced points are presented in Fig. 13 with virtually
no changes compared to Fig. 12. Figure 14 shows a comparison of
the solution obtained by the MCVM with the exact and the FVM
solutions for Pe=50. The previously used control volumes with

Fig. 9 Temperature distribution along the y-axis at x=0.5 for
the two-dimensional transient conduction with nonuniform
point distribution

Fig. 10 Domain and nonuniform point distribution for the po-
tential flow over a square block

Fig. 11 MCVM solution of the streamlines for a potential flow
over a block
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the second- and fourth-order approximations have been employed.
The number of points is the same as that in Fig. 12. The numerical
solutions are wiggle-free and coincident with the exact solutions
for a wide range of Peclet numbers, which demonstrates that the
optimal balancing diffusion is predicted correctly by the relations
�28� and �29�.

As a final example, the following two-dimensional convection-
diffusion equation in a square domain is considered:

T,x + T,y =
1

Pe
�2T in � = �1 � 1� �30a�

T�x,0� =
1 − exp��x − 1�Pe�

1 − exp�− Pe�
, T�x,1� = 0 �30b�

T�y,0� =
1 − exp��y − 1�Pe�

1 − exp�− Pe�
, T�1,y� = 0 �30c�

The exact solution of the equation is �36�

T�x,y� = �1 − exp��x − 1�Pe�
1 − exp�− Pe� ��1 − exp��y − 1�Pe�

1 − exp�− Pe� � �31�

To solve the equation by the MCVM, a collection of regular
square 11�11 points is selected in the domain. A typical control
volume, in this case, contains nine points, Fig. 6�a�. Using a bi-
quadratic approximation, the discretized equation for a typical
control volume is given by

1

Pe�j=1

4

Tij + 
 1

Pe
+

4h

3
�Ti5 + 
 1

Pe
−

4h

3
�Ti6 + 
 1

Pe
+

4h

3
�Ti7

+ 
 1

Pe
−

4h

3
�Ti8 −

8

Pe
Ti = 0 �32�

where h �h=�x=�y� is the distance between two consecutive
points �for the uniform case�.

Figure 15 demonstrates the solution of Eqs. �30a�–�30c� ob-
tained by the MCVM. The numerical results, in this case, agree
with the exact solution with a maximum relative error of �3%.

Conclusions
A modified meshless local Petrov-Galerkin method is proposed

and illustrated to numerically solve one- and two-dimensional
transient heat conduction, fluid flow, and convection-diffusion
problems.

Being inherently meshless, the technique offers choosing the
control volumes arbitrarily. In this technique, the control volumes
have simple shapes and can overlap one another. The number of
points within each control volume, hence, the degree of interpo-
lation, can be different from one control volume to another. This
makes the old and never-ending problem of “noncontrollability of
the interpolation degree” no longer a numerical technique draw-
back. Integrals over each control volume and along its boundary,
which arise from integrating the differential equation within the
control volume and applying Gauss’s theorem to the resulting ex-
pression, can now be easily evaluated. Therefore, there is no need
for a background grid; hence, the method would truly be a mesh-
less one.

Application of the method to the transient heat conduction, po-
tential flow over a block, and convection-diffusion problems
shows the accuracy and diverse applicability of the method even
with a coarse distribution of points. A procedure based on the
Fourier series has been introduced to determine the optimal bal-
ancing diffusion for convection-dominated situations. Using this
technique, a new upwinding relation is presented whose accuracy
is validated through numerical examples.

The results of this study, in turn, show that the meshless local
Petrov-Galerkin method can be well tailored so that the outcome
numerical technique—the proposed MCVM—can be imple-
mented to solve a variety of computational fluid dynamics and
heat transfer problems.

Nomenclature
Cp  specific heat
H  heat transfer film coefficient
h  distance between two consecutive points
K  thermal conductivity

k̄  balancing diffusion
Km  wave number

L  domain length

Fig. 12 MCVM solutions of the one-dimensional steady
advection-diffusion equation for uniform point distribution

Fig. 13 MCVM solutions of the one-dimensional steady
advection-diffusion equation for uniform point distribution

Fig. 14 MCVM solution of the one-dimensional steady
advection-diffusion equation for Pe=50 with uniform point
distribution
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N  total number of points
n  number of points within a control volume,

time-step sequence
O  order of magnitude

Pe  Peclet number
q  heat flux
R  radius
S  source
T  temperature

T̃  free-stream temperature
Tg  a given position function

t  time
u  velocity
w  weighting function

Greek Symbols
�  thermal diffusivity
�  interpolation function
�  boundary

�g ,�h  boundary segments
�  density

�  domain

Subscripts
,  derivative
i  point or control volume number

Superscripts
�  dimensionless variable
∧  unit vector

→  vector
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Adaptive Wavelet Method
for Incompressible Flows
in Complex Domains
An adaptive wavelet-based method provides an alternative means to refine grids accord-
ing to local demands of the physical solution. One of the prominent challenges of such a
method is the application to problems defined on complex domains. In the case of incom-
pressible flow, the application to problems with complicated domains is made possible by
the use of the Navier-Stokes–Brinkman equations. These equations take into account
solid obstacles by adding a penalized velocity term in the momentum equation. In this
study, an adaptive wavelet collocation method, based on interpolating wavelets, is first
applied to a benchmark problem defined on a simple domain to demonstrate the accuracy
and efficiency of the method. Then the penalty technique is used to simulate flows over
obstacles. The numerical results are compared to those obtained by other computational
approaches as well as to experiments. �DOI: 10.1115/1.1949650�

Introduction
In dealing with unsteady incompressible flows, one often en-

counters problems whose solutions contain localized features, or
sharp variations, in which their locations vary with time. Accurate
numerical simulations of such problems using uniform grids re-
quire a large number of degrees of freedom, since a high-
resolution discretization is necessary to resolve sharp variations.
In order to reduce the required number of degrees of freedom and,
at the same time, obtain solutions with similar accuracy, an adap-
tive discretization method that reflects the local demands of the
solutions becomes necessary.

We discuss the use of an adaptive wavelet-based method, as an
alternative to adaptive mesh refinement methods �e.g., �1�� and
adaptive finite element methods �e.g., �2��. In the adaptive wavelet
method, the numerical solution is represented by a multiscale ba-
sis called wavelets. Such a basis is localized in both physical and
Fourier spaces �3�. It is this feature that allows one to design a
dynamically adaptive algorithm for solving problems of evolution
type �4–9�. These algorithms take advantage of the fact that the
local regularity of a function is provided by the magnitude of
wavelet coefficients. A large magnitude implies that locally the
function or one of it derivatives changes rapidly. On the other
hand, coefficients with small magnitude imply that the function
varies smoothly. Thus, examining the wavelet coefficients sug-
gests which regions should be refined and which can be coars-
ened. Existing adaptive wavelet-based methods are based on ei-
ther wavelet-Galerkin �4,5� or wavelet-collocation approaches
�6–10�. Despite the generality that the Galerkin approach pro-
vides, evaluation of integrals of nonlinear terms poses a challenge
in obtaining an algorithm that is both efficient and accurate. This
is not an issue for the collocation approach. An additional issue,
which wavelet-based methods have to address, deals with the fact
that higher-dimensional wavelets are conventionally constructed
by employing the tensor product of the one-dimensional wavelets.
Thus, the use of these methods in higher dimensions has been
primarily limited to solving problems defined on rectangular do-
mains.

In �9,11�, a wavelet-based adaptive multiresolution representa-

tion algorithm has been developed for problems defined in three-
dimensional parallelepiped domains. The method is based on the
interpolating wavelet basis and the collocation formulation. The
algorithm utilizes the connection between the interpolation prop-
erties of interpolating wavelets and the semi-structured dyadic
collocation points in order to obtain a fast wavelet transform on
irregular grids. This, and the use of an efficient data structure �11�,
results in a relatively inexpensive grid adaption procedure. In ad-
dition, a fast algorithm for derivative calculations via finite differ-
ences has also been developed. Other features of the adaptive
wavelet algorithm include the ability of handling boundary con-
ditions of type other than periodic and the capability of coping
with any order of the interpolating wavelet basis chosen.

In this work, the primary goal is to investigate the application
of the adaptive wavelet algorithm to incompressible flow prob-
lems defined on complicated domains. The task may be accom-
plished by the use of a generalized coordinate transformation to
map the physical domain to a simple Cartesian computational do-
main and, subsequently, solve the transformed equation in the
simple domain. When a problem is such that it involves either
irregularly shaped �possibly moving� objects immersed in a fluid
or a flow within complicated domain boundaries, the following
alternative approaches �and variants� are used: �i� the fictitious
domain method �12,13�, �ii� the immersed boundary technique
�14–16�, and �iii� the Brinkman penalization method �17�. These
techniques share one common idea in that the original domain is
embedded into an artificial simple domain, a box in either two or
three dimensions. Subsequently, governing equations are reformu-
lated so that they are valid for the complete new simple domain.
In the fictitious domain method, the problem is reformulated in
weak form where the original boundary conditions are taken into
account by the introduction of an auxiliary variable and a
Lagrange multiplier. In the immersed boundary technique, appro-
priate external surface-forcing terms represented by Dirac � func-
tions are added to the momentum equation to simulate the pres-
ence of objects. In the Brinkman penalization technique, instead
of adding a surface force, the objects are taken into account by
adding a Darcy volumetric drag term in the momentum equation;
thus, one considers the Navier-Stokes–Brinkman equations. Since
our discretization relies on a collocation formulation, either the
immersed boundary or the Brinkman penalization techniques are
suitable to incorporate in our procedure. Although proven success-
ful in handling complicated moving boundaries, especially in bio-
logical fluid flows �14,15,18�, the immersed boundary technique
yields only first-order accurate solutions near objects due to the
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singularities of the surface forcing terms �18�. Mathematical esti-
mates and numerical evidence �17,19� suggest that solutions using
the Brinkman penalization approach converge with respect to the
Darcy drag parameter, which is independent of the spatial and
temporal discretization. Because of this, in this work the Brink-
man penalization approach is used.

In the following, we provide a brief summary of the adaptive
wavelet collocation algorithm. Subsequently, the Navier-Stokes-
Brinkman equations and their time discretization via a fractional
step method are described. The method is then first applied to the
lid-driven cavity problem in a square domain to demonstrate the
accuracy and efficiency of the method. Thereafter, the method is
used to simulate the flow past two circular cylinders with horizon-
tal tandem arrangements. Conclusions are given in the last sec-
tion.

Adaptive Wavelet-Based Algorithm
We discuss the adaptive wavelet-based multiresolution repre-

sentation algorithm, which is based on the use of the interpolating
wavelets on a finite interval introduced in �20�. Below, we first
give a brief introduction of the one-dimensional basis and the
generalization to higher dimensions. This is followed by a de-
scription of the dynamically adaptive grid strategy for time-
dependent problems.

One-Dimensional Interpolating Wavelet Basis. We define the
space �Vj�0,1�� , j� j0, which is the span of �� j,k ,k=0,… ,2 j�.
We denote the function � j,k as the scaling function on level of
resolution j and location k. Such basis functions of order p �p
�N , p even� are defined as the follows �8,20� for j� log2�p�+1,

� j,k�x� = ��2 jx − k� + �
n=−p+2

−1

ank��2 jx − n�, k = 0, . . . ,p − 1

�1�

� j,k�x� = ��2 jx − k�, k = p, . . . ,2 j − p �2�

� j,k�x� = ��2 jx − k� + �
n=2 j+1

2j+p−2

bnk��2 jx − n�, k = 2 j − p + 1, . . . ,2 j

�3�

where ��x� is the interpolating scaling function of order p
�20–22�. The weights ank and bnk are defined as

ank = ljk
l �xj,n� and bnk = ljk

r �xj,n�

where xj,k=2−jk denotes a dyadic grid and ljk
l and ljk

r represent,
respectively, the Lagrange polynomials of order p−1 relative to
the p-tuples of �xj,0 ,xj,1 ,… ,xj,p−1� and �xj,2 j−p+1 ,xj,2 j−p+2 ,… ,xj,2 j�
i.e.,

ljk
l �x� = �

i=0

i�k

p−1
x − xj,i

xj,k − xj,i
and ljk

r �x� = �
i=2 j−p+1

i�k

2 j

x − xj,i

xj,k − xj,i

The scaling function � j,k has the following properties:

1. Since ��n�=�0,n, the function � j,k satisfies the so-called in-
terpolation property, i.e., � j,k�xj,l�=�k,l.

2. The support of � j,k is compact, i.e., 	supp � j,k�x�	
O�2−j�,
due to the fact that supp ��x�= �−p+1, p−1�.

3. The function � j,k�x� is the solution of the scaling relation

� j,k�x� = �
l

hl
j,k� j+1,l�x� �4�

where the coefficients �hl
j,k� can be easily obtained by mak-

ing use of the fact that ��x� satisfies the scaling relation

relation ��x�=�k=−p+1
k=p−1 hk��2x−k�, and the coefficients �hk�

are filters that determine the interpolating scaling function
�20,22�. We note that the set of coefficients �hl

j,k� has com-
pact support.

4. Polynomials of degree less than p on �0,1� can be written as
linear combinations of �� j,k ,k=0,… ,2 j�.

As a consequence of property 3, the spaces Vj �here, we drop the
span �0,1� for notational simplicity� form a sequence of ladder
spaces Vj �Vj+1. We now define the complementary space Wj
such that

Vj+1 = Vj � Wj �5�

The basis functions of Wj, denoted by � j,k, are called wavelets. In
this particular setting, wavelets can be simply chosen as

� j,k�x� = � j+1,2k+1�x�, k = 0, . . . ,2 j − 1 �6�

The decomposition of Vj+1 until Vj0
is reached, where Vj0

denotes
the space associated with the coarsest scale, yields the multireso-
lution analysis �MRA� of Vj+1,

Vj+1 = Vj0
� ��

l= j0

j

Wl� �7�

Because of the interpolation property of the basis, we can de-
fine the interpolation operator Ij that maps the continuous function
f �C0�0,1� to the space Vj

�Ijf��x� = �
k=0

k=2 j

f j,k� j,k�x� �8�

where f j,k= f�xj,k�. Let us denotes �Ijf� by f j. Equation �7� implies
immediately that f j can also be written in the multiscale represen-
tation

f = �
k=0

2j0

cj0,k� j0,k�x� + �
l=j0

j−1

�
k=0

2l−1

dl,k�l,k�x� �9�

where dj,k is called the wavelet coefficient. Consider the differ-
ence of the approximations of f in the two successive spaces Vj
and Vj+1

wj = f j+1 − f j = �
k=0

2 j+1

f j+1,k� j+1,k − �
k=0

2j

f j,k� j,k = �
k=0

2j−1

dj,k� j,k

From Eqs. �4� and �6�, and the interpolation property, it can be
seen that the wavelet coefficients, obtained by evaluating
wj�xj+1,2k+1�, are given by

dj,k = f j+1,2k+1 − �
l=0

2j

h2k+1
j,l f j,l �10�

It is immediately evident that the wavelet coefficient dj,k provides
a measure of the error of the approximation of f by f j at the point
xj+1,2k+1. The wavelet coefficient is large when the function � j,k is
located in the vicinity of a singularity or near singularity of f .
Therefore, the number of wavelets required to represent the func-
tion f , having near-singular behavior within a desired accuracy,
can be substantially reduced if we use the wavelet representation
instead of the scaling function representation. It is noted that in
Eq. �10�, for each k, only a small number of h2k+1

j,l �precisely p�
have nonzero values. Consequently, to compute the particular
wavelet coefficient dj,k, we require only f j+1,2k+1 and those f j,l

with l such that the value of h2k+1
j,l is nonzero. The fast algorithm

of the interpolating wavelet transform on irregular grids takes ad-
vantage of such observation �see �9� for details�.

To this end, let us note that it has been shown in �20� that f j

converges uniformly to f in the L� norm, i.e.,  f − f j�→0, as j
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→� �see the estimate for the Sobelov norm in �23��. Analytical
properties of wavelets, such as norm equivalences in different
functional spaces, can be found in �20,23,24�.

Two-Dimensional Interpolating Wavelet Basis. Higher-
dimensional bases are constructed by using the tensor product of
the one-dimensional basis. Particularly, the scaling function on
level of resolution j in the two-dimensional case is defined by

� j,k
�x,y� = � j,k1

�x�� j,k2
�y�, k = �k1,k2� � � j = �0, ¯ ,2 j�2 �11�

and two-dimensional wavelets consist of three different products

� j,k
�1,0��x,y� = � j,k1

�x�� j,k2
�y�, k � � j

�1,0� = �0, ¯ ,2 j − 1�

� �0, ¯ ,2 j� �12�

� j,k
�0,1��x,y� = � j,k1

�x�� j,k2
�y�, k � � j

�0,1� = �0, ¯ ,2 j�

��0, ¯ ,2 j − 1� �13�

� j,k
�1,1��x,y� = � j,k1

�x�� j,k2
�y�, k � � j

�1,1� = �0, ¯ ,2 j − 1�

� �0, ¯ ,2 j − 1� �14�

As a consequence of the one-dimensional basis, the two dimen-
sional scaling function has properties that are generalizations of
properties 1–4.

To simplify the notation, let us introduce the multi-index 	
= �e ,k� with e� ��1,0� , �0,1� , �1,1�� and k�
 j

e and set � j,	

�� j,k
e . The spaces V j and W j, which are, respectively, the span of

the sets �� j,k� and �� j,	� satisfy

V j � V j+1 and V j+1 = V j � W j = V j0
� ��

l=j0

j

Wl�
The multiscale approximation of a function f�x ,y��C0�0,1�2 at
level of resolution j is given by

f j�x,y� = �
k

f j0,k� j0,k�x,y� + �
l=j0

j−1

�
	

dl,	�l,	 �15�

where f j0,k= f�xj0,k1
,yj0,k2

� and dj,	 represents the wavelet coeffi-
cients. Analogous to the one-dimensional case, wavelet coeffi-
cients dl,k

�1,0�, dl,k
�0,1�, and dl,k

�1,1� measure the singular behavior along
horizontal, vertical, and diagonal directions respectively. Because
of the nature of the tensor product, the calculation of wavelet
coefficients dj,	 on each level of resolution reduces to the appli-
cation of the one-dimensional transform, first to the column and
then to the row of �f j+1,k� �or vice versa�.

Sparse Wavelet Representation and Irregular Grids. The
multiscale approximation can be rewritten as a sum of wavelets
whose amplitude are above and below a certain threshold �

fJ�x,y� = f�
J�x,y� + R�

J�x,y� �16�

where

f�
J�x,y� = �

k

f j0,k�0,k + �
l=j0

J−1

�
	:	dl,		��

dl,	�l,	 �17�

R�
J�x,y� = �

l=j0

J−1

�
	:	dl,		��

dl,	�l,	 �18�

In order for the approximate function fJ to be within a prescribed
accuracy, J must be sufficiently large. Neglect of the term R�

results in an error, which is of the order of �. Provided that the
function f is sufficiently smooth, the error is proportional to the
threshold value � �20�

 f − f�
J �  �C1 + C2log�����  C3� �19�

where C1, C2, and C3 are constants that depends on the function f .
Furthermore, the number of basis functions in �17�, denoted by N,
whose amplitudes are larger than the threshold value �, satisfies
�20�

N1/d  C4�−1/p �20�

where d is the dimensionality of the problem and the constant C4
depends on the function f . These bounds imply that f�

J approxi-
mates f within � with approximately �−d/p wavelet coefficients. In
other words, a more accurate approximation function f�

J can be
obtained by decreasing the value �, however, with a commensu-
rate increase in the number of basis functions required.

Let collocation points xj,k= �2−jk1 ,2−jk2� and xj,	=xj+1,2k+e de-
note points on the dyadic grid corresponding to the specific scal-
ing function and wavelet, respectively. The term f�

J is called the
sparse wavelet representation �SWR� of the function f�x ,y� �10�.
The wavelets that are associated with the SWR are called essential
wavelets. The term R�

J consists of wavelets whose coefficients are
smaller than � and thus is neglected. Subsequently, the associated
collocation points are also omitted. This results in the irregular
�semi-structured� sparse grid of essential points Ge

= �xj0,k ,�l=j0
l=J−1xl,	 : 	dl,		���.

Derivative Approximation. In order to solve partial differen-
tial equations within the collocation framework, an efficient pro-
cedure for computing the approximation of derivatives is neces-
sary. The approximation can be computed by direct differentiation
of the SWR of the function �7�. However, this approach is some-
what computationally costly because of different support sizes of
wavelets on different levels. An alternative approach is to approxi-
mate derivatives using finite-differences �10,25�. This is possible
due to the relationship between derivatives of the interpolating
basis and finite differences. For a consistent approximation, the
order of the finite difference used must be connected to the order
of the wavelet. Then an approximation can obtained on a recon-
structed uniform stencil �10�. Such an algorithm is less expensive
than direct differentiation, but still somewhat inefficient in the
case where a large number of absent points need to be recon-
structed by interpolation of the sparse grid. Here, we use the more
efficient approach developed in �9�, which uses finite differences
on nonuniform stencils �with some restrictions�. Consequently, the
need of interpolations is reduced substantially. In addition, the
algorithm takes advantage of the fact that Ge is a dyadic semi-
structured grid. Hence, coefficients of possible finite-difference
stencils can be calculated and stored a priori. The calculation of
finite-difference coefficients for a particular grid is reduced to
simply fetching the stored coefficients whose stencil matches the
one being considered. All three of the above methods produce
derivative approximations of the same order of accuracy but have
different computational cost and somewhat different robustness,
which may be important in some problems.

Adaptive Algorithm for Time-Dependent Problems. In order
to resolve structures appearing in the solution as they evolve, the
collocation points need to be adapted dynamically to reflect the
local change of the solution. The conceptual idea of the adaptive
strategy, introduced in �4� �and later pursued by several others
�5–10��, is that at each time step only the set of wavelets that
represents the function within some prescribed accuracy is re-
tained. To accommodate the possible advection and sharpening of
solution features within a time step, wavelets that are centered in
the vicinity of an essential wavelet at the same scale or smaller
scale are also retained. Such wavelets are called neighboring
wavelets. This strategy is expected to perform well when the so-
lution changes smoothly in time, i.e., the solution is appropriately
time resolved. To elaborate on the implementation of this adaptive
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strategy within the present work, consider, for example, a second-
order partial differential equation of the form

�u

�t
= F�u,

�u

�x
,
�u

�y
,
�2u

�x2 ,¯�
with appropriate boundary conditions. After discretization in time
by a finite-difference algorithm, the numerical solution of the
problem reduces to solving a sequence of equations of the form

An+1un+1 = Fn+1 �21�

Depending on F and the discretization scheme, An+1 may depend
on un and/or un+1. Given the approximate solution un at the pre-
vious time step tn, the approximate solution un+1 can then be com-
puted. As proposed in �8�, two threshold parameters �s�a are
introduced, where the former determines whether wavelets �and
their corresponding collocation points� are essential and thus must
be retained, whereas the latter determines which neighborhood
wavelets should be included. Roughly speaking, the threshold �s
controls the error of the solution to be obtained, while �a deter-
mines the sensitivity of the adaptive refinement. Note that essen-
tial wavelets and their corresponding collocation points together
with neighborhood wavelets and their associated collocation
points constitute the sets of active wavelets and active collocation
points, respectively. We denote the irregular sparse grids of active
collocation points at tn as Gn. With the wavelet collocation dis-
cretization on Gn, the combined �21� and boundary conditions
reduce to a system of �linear or nonlinear� algebraic equations that
can be solved by direct or iterative linear methods. The dynami-
cally adaptive algorithm can be summarized as follows:

i. Solve the discrete system to obtain the approximate solu-
tion un+1 on the irregular sparse grid Gn by using the so-
lution from the previous time step as initial condition.

ii. Determine Ĝe= �xj0,k,�l�j0
xl,	 : 	dl,	

n+1	��s� based on thresh-
olding of the magnitude of essential wavelet coefficients

and determine the neighboring region, i.e., Ĝn

=��l,	���a
Nl,	, where �a���l ,	� : 	dl,	

n+1	��a� and Nl,	 is
a set neighborhood points defined by a certain strategy, to

yield the new sparse grid Ĝ= Ĝe� Ĝn.
iii. Assign a zero value to wavelet coefficients dl,	

n+1 associated
with new collocation points, i.e., set dl,	

n+1=0, for xl,	

� Ĝ \Gn and compute the inverse adaptive wavelet trans-

form to yield un+1 on the new sparse grid Ĝ.
iv. Assign un+1→un and Ĝ→Gn+1 increment time and go

back to step i.

The initial sparse grid G0 is obtained by consideration of the
initial conditions. Different strategies can be employed in defining
the set of neighborhood points N j,	. One possibility is to include
�Nn+1�2Nn+1 �Nn�N� surrounding points at the same level j as
well as at the next level �11�. As wavelet coefficients associated
with different wavelets measure the strength of singularities in
different directions, the strategy can account for this property �26�.
Since dj,	 with e= �1,0� measures the strength of the singularity in
the horizontal direction, corresponding to such wavelet we include
in Nn2Nn−1 collocation points to the left and right at the same level
as well as at the next level. The set N j,	 with e= �0,1� can be
defined in an analogous way �by simply switching left to bottom
and right to top�. Since the coefficient dj,	 with e= �1,1� measures
the strength of the singularity in the diagonal directions, N j,	 as-
sociated with such wavelets include �Nn+1�2Nn+1 surrounding
points in both directions at the same level as well as at the next
level. Note that the collocation points associated with e in the
three cases are centered at different locations. This strategy results
in an irregular sparse grid with larger sparseness. Other possible

strategies may be considered. For example, the number of points
in N j,	 might vary relative to the magnitude of wavelet coeffi-
cients.

Governing Equations
We consider fluid flow governed by the two-dimensional, time-

dependent, Newtonian, incompressible Navier-Stokes equation in
� f �R+

�u

�t
+ �u · � �u = − � p +

1

Re
�2u �22�

� · u = 0, �23�

with appropriate initial and boundary conditions. Here, � f denotes
the fluid domain, u= �u�x ,y , t� ,v�x ,y , t��T represents the velocity
fields and p is the pressure. The dimensionless parameter Re de-
notes the Reynolds number.

Since the numerical method is based on the tensor product of a
one-dimensional basis, it is not suited to problems where the
boundary of the domain �� f is not rectangular. However, the
Brinkman penalization approach �17,19� allows one to study such
a problem within a rectangular domain. In this approach, the do-
main �=� f ��s, where �s denotes solid obstacles or walls, is

embedded in a rectangular domain �̂ that contains �, i.e., ���̂.

The flow within the domain �̂ is then considered in the limit of
Brinkman’s porous media. More precisely, the solid and fluid re-
gions are, respectively, characterized by small and large values of
a permeability parameter K. The Navier-Stokes–Brinkman equa-
tions, obtained by adding a volumetric Darcy drag term to the
Navier-Stokes equations, now governs the flow within the domain

�̂�R+ �17,19�

�u

�t
+ �u · � �u +

1

ReDaK
u = − � p +

1

Re
�2u �24�

� · u = 0, �25�

where Da denotes the Darcy number. The permeability of each
medium is defined by K=Ks→0+ for �x ,y���s and K=Kf

→ +� for �x ,y��� f.
Since the Navier-Stokes–Brinkman equations are valid in the

entire domain �̂, the adaptive wavelet collocation method can
now be applied to the solve this reformulated problem. Note that
the equations take into account the interface conditions between
different media implicitly. With slightly modification, a moving
boundary can also be considered �see �19��. Estimates of solution
error resulting from �24� and �25� are given in �17�. The error is

found to be O�Kf
−1+Ks

1/4� in the H1-norm over the domain �̂, and
O�Ks

3/4� in the L2-norm over �s. This implies that the solution of
�24� and �25� converges to that of �22� and �23� as Ks→0+ and
Kf → +�. Numerical verification from the solution of a specific
problem shows slightly better accuracy than the estimate. How-
ever, worst accuracy is observed when Ks is smaller than some
particular value.

Fractional Step Method
A fractional step method �sometimes called a projection

method, a pressure correction method, etc.� �27,28� is used for the
time discretization of the Navier-Stokes–Brinkman equation. In
the first step, the transport step, an intermediate velocity field û is
calculated by using the Crank-Nicholson scheme for the viscous
term and the second-order Adams-Bashforth scheme for the con-
vective term

Journal of Fluids Engineering JULY 2005, Vol. 127 / 659

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



û − un

�t
+ �

q=0

1

�q�un−q · � �un−q +
1

2ReDaK
�û + un�

=
1

2Re
�2�û + un� �26�

where �0=3/2 and �1=−1/2. As the pressure is not used, this
intermediate velocity field is not divergence-free. In the second
step, the projection step, an approximation to the true velocity
field u is obtained by solving the system

un+1 − û

�t
= − � � �27�

� · un+1 = 0 �28�

where � is an auxiliary potential function. Equations �27� and �28�
are equivalent to the following Poisson equation:

�2� =
1

�t
� · û �29�

When required, the pressure field at the new time step can be
computed from

pn+1 = � −
1

2Re
�t�2� �30�

Equations �26� and �29� must be augmented by boundary condi-
tions for û and �, respectively. There is some disagreement in the
literature on the proper choice of conditions �28–30�. In this work,
the boundary conditions on û are taken to be the same as those on
u. The boundary conditions for � are taken to be of Neumann
type and are deduced from �27� in conjunction with the condition
of global mass conservation.

After discretization in space on the irregular sparse grid Gn, �26�
and �29� with their boundary conditions reduce to three linear
systems of equations of the following form:

Ay = f �31�

The matrix A, of size Na�Na with Na corresponding to the num-
ber of collocation points, represents the discrete Laplacian within

the domain �̂ with boundary conditions incorporated. The vectors
y and f are discrete representations of û , v̂, or � and correspond-
ing nonhomogeneous terms, respectively. Spatial derivatives of û
and v̂ are approximated on a nonuniform stencil by using the fast
algorithm discussed earlier �9�. However, it is found that the use
of this algorithm to compute derivative approximations of �
sometimes results in numerical instabilities. Such instabilities are
overcome by approximating these derivatives on uniform recon-
structed stencils �10�. The linear system �31� is solved using the
conjugate gradient squared �CGS� method with incomplete LU
�ILU� preconditioning.

We note that the irregular sparse grid Gn+1 is constructed from
thresholding of velocity components only since pressure acts as an
intermediate nonphysical variable in incompressible flows, i.e., it
is a Lagrange multiplier that constrains the velocity field to be
divergence-free.

Numerical Applications
In order to demonstrate the accuracy and flexibility of the adap-

tive wavelet method in a simple domain, we first consider the
lid-driven cavity problem. The problem has served as a bench-
mark test for assessing the accuracy of numerical methods. For
relatively low Reynolds numbers, the flow exhibits standing vor-
tices in which their shape, size, and number are functions of Re.
Subsequently, we consider the flow past two circular cylinders in
a horizontal tandem arrangement as a test problem for the com-
bined method based on Brinkman penalization and adaptive wave-

lets. In this flow, a variety of shedding patterns are obtained as the
distance between the two cylinders is varied �31�.

Lid-Driven Cavity. The physical configuration of the lid-
driven cavity is that of a unit square cavity with rigid walls filled
with a fluid. The equations governing the flow in dimensionless

form are �24� and �25� with �̂=� f = �0,1�� �0,1� and Kf →�.
The fluid is set in motion by moving the top boundary �lid� at a
constant velocity; thus, the boundary conditions are

u�x,y,t� = g�x,y,t� � ��1,0�T on y = 1,

�0,0�T on x = 0,1 and y = 0
� �32�

and the initial condition is given by u�x ,y ,0�=0.
The boundary conditions for û are taken to be identical to those

of u

û = u = gn+1, on � �̂ �33�

Because of this choice of boundary conditions, we now have that
û ·n=gn+1 ·n, which along with �27� results in the following ho-
mogeneous Neumann boundary conditions for �:

�� · n = 0 on � �̂ �34�

It can easily be seen from �27� that

�
��̂

un+1 · n d� =�
��̂

û · n d� − �t�
��̂

� � · n d� �35�

By making use of �33� and �34�, we see that the global mass
constraint ���̂un+1 ·n d�=0 is identically satisfied.

In all numerical calculations, we use a basis of order p=4 and
threshold parameters �s=5�10−4 and �a=2�s. Consistent deriva-
tive approximations are obtained via nine-point finite-difference
stencils. The number of resolution levels is set to J− j0=6 with
j0=3 �nine points in each direction at the coarsest scale�. Note that
the finest grid spacing is equivalent to �x=�y=1/512. Time in-
tegrations are performed until steady state, defined by un+1

−un��5�10−5, is reached.
Figure 1 shows streamlines and active collocation points ob-

tained for Re=1000 at different times as well as at steady state.
Formation of eddies can be observed very distinctly and the pat-
tern agrees qualitatively quite well with that given in �32�. The
distribution of collocation points clearly demonstrates that the dy-
namically adaptive grid is able to properly track the moving struc-
tures. As a results, the number of collocation points in Gn ,N
=dim Gn, varies with the local demands of the solution for fixed
threshold parameters. For these particular threshold values, the
maximum number of collocation points required during the simu-
lation is found to be approximately 4400. At steady state, the
compression ratio �the ratio of the number of active points to that
corresponding to a uniform mesh of equivalent resolution� is 60.
Note that due to the velocity singularities in the upper corners, the
adaptive algorithm demands a considerable number of points in
confined neighborhoods of these locations. Solving the corre-
sponding desingularized problem would reduce the number of
such points substantially �33,34�.

The streamlines and collocation points of the solutions at steady
state for Re=400 and 3200 are shown in Fig. 2. For Re=3200, as
can be seen, an additional secondary vortex appears near the up-
per left corner. It is worth noting that in the case of Re=400, the
algorithm yields an inaccurate structure of the secondary vortex at
the lower left corner. However, this is not surprising since the size
of this eddy �0.1237 in width and 0.1081 in length �35�� is smaller
than the coarsest resolution. In addition its strength is fairly weak
as the maximum value of absolute vorticity is of the order of 0.05
�our computation with larger j0 and �35��. Although heuristic, the
issue can also be remedied by simply setting the threshold param-
eters such that the adaption criteria is more sensitive near the
lower left corner. Specifically, adapt the grid based on w�xj,	�dj,	
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instead of dj,	 with the Gaussian weight function w�xj,	�
=9 exp�−25xj+1,2k+e

2 �+1. Comparisons of steady-state velocity
distributions along the midsections of the cavity for Re=400,
1000, and 3200 with those of �35� are shown respectively in Figs.

3–5. Table 1 compares the intensities of the primary vortex and
the lower left corner secondary vortex to those given in �35�,
obtained by the use of a multigrid technique, and in �34� by using
a Chebyshev spectral collocation method for the desingularized

Fig. 1 Evolution of streamlines and dynamically adaptive grids for Re=1000 at t=2.5, 5.0, 7.5, 12.5,
and steady state. The associated number of collocation points at each time are respectively N
=3378, 3910, 4075, 4180, and 4372
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problem. Note that resolutions of 257�257 grids �129�129 for
Re=1000� were used in the calculations reported in �35�, and
160�160 modes �and subsequently collocation points� in those in
�34�. The total number of active wavelet collocation points re-
quired at steady state in the present computations are N=3165,
4180, and 6170 for Re=400, 1000, and 3200, respectively. Al-
though the numbers of collocation points are relatively small,
Figs. 3–5 and Table 1 indicate that the results compare favorably
with the best results available in the literature.

Flow Past a Tandem Pair of Circular Cylinders. We consider
the two-dimensional unsteady laminar flow of a viscous fluid past
circular cylinders in tandem horizontal arrangements in an open
domain. To apply the adaptive wavelet method, we use the gov-
erning equations �24� and �25�. In order to solve the problem
numerically, the computational domain is truncated from the open

infinite domain and suitable boundary conditions are imposed. In
this study, the computational domain is �xa ,xb�� �ya ,yb�
= �0,35�� �0,24�. Two cylinders, with identical diameters D=1,
are located at �x ,y�= �8,12� and �8+L, 12�, respectively. The con-
dition imposed on the left boundary is that of inflow, i.e., u
= �1,0�T. Free-slip conditions are imposed at the upper and lower
boundaries, i.e., on such boundaries we take �u /�y=0 and v=0.
The proper outflow boundary conditions, which allows the flow to
exit gracefully without producing reflections, are nontrivial and, in
fact, have long been the subject of discussions in the literature
�30,36,37�. In this work, we use the simple conditions

�u

�x
= 0 �36�

One may expect such conditions to perform well when the out-
flow boundary is located sufficiently far down-stream. Numerical
studies reported in �36� indicate that these conditions produce
very weak or no distortions even when the outflow boundary is
located near the flow structures in unstratified flow, while some
artificial distortions are observed in stratified flow �e.g., in
Poiseuille-Bénard channel flow�.

In the first case that we look at, we assume that the boundary
conditions for û and u are the same, as before. In the second case,
since the boundaries are artificial, we take the implicit conditions
û ·n=un+1 ·n on the inflow, and upper and lower boundaries. On

Fig. 2 Streamlines and dynamically adaptive grids at steady
state for Re=1000 and 3200

Fig. 3 Comparison of steady state velocity profiles u„0.5,y…
and v„x ,0.5… with those of †35‡ for Re=400
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the outflow boundary we take û ·n=un+1 ·n−�, where � is ob-
tained from the global mass conservation statement

�
��̂

un+1 · n d� = 0

and is given by

� = 1 −
1

H�
�o

n d� �37�

where H is the size of the outflow boundary �o. Such conditions
on the normal direction of û, with �27�, suggest the homogeneous
Neumann conditions

�� · n = 0 �38�
on the inflow, and upper and lower boundaries, and the nonhomo-
geneous Neumann condition

�� · n = −
�

�t
�39�

on the outflow boundary for the Poisson equation �29�. The above
boundary conditions were originally proposed in �36�.

For the calculations, we use the basis of order p=4 and thresh-
old parameter �s=7.5�10−4 and �a=10�s. The number of resolu-
tion levels is limited to 4, and 71�49 collocation points are used

in the x and y directions at the coarsest scale. This results in the
finest grid spacing of 0.03125. The parameter ReDaK is set to
7.5�10−4 in the solid circular cylindrical domains and to 1
�1010 in the fluid domain.

The flow with Re=200 and gap L between two cylinders with
1.5DL4D is examined. Plots of vorticity for the flow with
L=1.5D, 3D, and 4D at t=200 are depicted in Figs. 6�a�, 7�a�,
and 8�a�, respectively. It can be observed that the vortex-shedding
pattern changes when the distance between two cylinders is var-
ied. For L=1.5D, the cylinders behave like a single blunt body at
this Reynolds number. The vortex street forms behind the down-
stream cylinder. For L=4D, the vortex street forms behind both
cylinders. The present results agree qualitatively well with experi-
mental observations in �31� as well as with the numerical study in
�38�. The corresponding irregular sparse grids resulting from the
dynamically adaptive algorithm are depicted in Figs. 6�b�, 7�b�,
and 8�b�. It can be observed that the distribution of collocation
points in the wake reflects the wake strength and pattern. The
results clearly indicate that the adaptive algorithm concentrates
the collocation points according to the solution features. We note
that the compression ratio varies with time during each simula-
tion. For example, for L=3D, the compression ratio is approxi-
mately 130 �N�6600� in the early flow-development stage and
85 �N�10200� when in the periodic-shedding stage. Other rel-
evant flow quantities, such as shedding frequency as well as lift
and drag coefficients, are currently being examined.

Fig. 4 Comparison of steady state velocity profiles u„0.5,y…
and v„x ,0.5… with those of †35‡ for Re=1000

Fig. 5 Comparison of steady state velocity profiles u„0.5,y…
and v„x ,0.5… with those of †35‡ for Re=3200
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Concluding Remarks
In this work, an adaptive wavelet-based multiresolution collo-

cation method is combined with the Brinkman penalization
method using a fractional time step algorithm to solve incom-
pressible Navier-Stokes equations.

In the lid-driven cavity problem, it is observed that the dynami-
cally adaptive algorithm, based on thresholding of wavelet coef-
ficients, adapts collocation points to the flow structures. As a re-
sults, the number of collocation points varies with the demand of
the solution. Numerical results are found to be in good agreement
with those obtained by previous investigators even with the use of
a relative small number of unknowns.

As an application of the method to flow in complex domains,
the external flow past a tandem pair of circular cylinders is inves-
tigated. The numerical solutions agree qualitatively well with ex-
perimental and other numerical solutions even though relatively
few degrees of freedom are used. This is primarily due to the
effectiveness of the adaptive algorithm in locating collocation
points to reflect the shedding wake pattern of the flow.
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Table 1 Comparisons of the intensities of the primary vortex and the lower left corner sec-
ondary vortex

Primary vortex Lower left corner vortex
Re Investigators �min �v,c Location �x ,y� �max �v,c Location �x ,y�

400 Present −0.1131 2.3087 �0.5547,0.6094� 1.5953�10−5 −0.06295 �0.0547,0.0469�
Ref �35� −0.1139 2.2947 �0.5547,0.6055� 1.4195�10−5 −0.05697 �0.0859,0.0781�

1000 Present −0.1173 2.0476 �0.5313,0.5703� 2.2027�10−4 −0.35628 �0.0859,0.0781�
Ref �35� −0.1179 2.0497 �0.5313,0.5643� 2.3113�10−4 −0.36175 �0.0859,0.0781�
Ref �34� −0.1189 2.0678 �0.5384,0.5652� 2.3345�10−4 −0.35228 �0.0833,0.0781�

3200 Present −0.1171 1.8594 �0.5234,0.5390� 9.8933�10−4 −1.02891 �0.0781,0.1172�
Ref �35� −0.1204 1.9886 �0.5117,0.5352� 9.7823�10−4 −1.06301 �0.0859,0.1094�

Fig. 6 „a… Vorticity field and „b… dynamically adaptive grid for
flow past a tandem pair of circular cylinders with gap L=1.5D at
t=200 for Re=200

Fig. 7 „a… Vorticity field and „b… dynamically adaptive grid for
flow past a tandem pair of circular cylinders with gap L=3D at
t=200 for Re=200

Fig. 8 „a… Vorticity field and „b… dynamically adaptive grid for
flow past a tandem pair of circular cylinders with gap L=4D at
t=200 for Re=200

664 / Vol. 127, JULY 2005 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



References
�1� Berger, M. J., and Colella, P., 1989, “Local Adaptive Mesh Refinement for

Shock Hydrodynamics,” J. Comput. Phys. 82, pp. 64–68.
�2� Mackerle, J., 2001, “Error Estimates and Adaptive Finite Element Methods: A

Bibliography �1990 - 2000�,” Eng. Comput. 18, pp. 802–914.
�3� Daubechies, I., 1992, Ten Lectures on Wavelets, SIAM, Philadelphia.
�4� Liandrat, J., and Tchamitchian, P., 1990, Resolution of the 1D Regularized

Burgers Equation Using a Spatial Wavelet Approximation, ICASE Report
90—83, NASA.

�5� Fröhlich, J., and Schneider, K., 1994, “An Adaptive Wavelet Galerkin Algo-
rithm for One-Dimensional and 2-Dimensional Flame Computations,” Eur. J.
Mech. B/Fluids 13, pp. 439–471.

�6� Vasilyev, O. V., and Paolucci, S., 1996, “Dynamically Adaptive Multilevel
Wavelet Collocation Method for Solving Partial Differential Equations in a
Finite Domain,” J. Comput. Phys. 125, pp. 498–512.

�7� Vasilyev, O. V., and Paolucci, S., 1997, “A Fast Adaptive Wavelet Collocation
Algorithm for Multidimensional PDEs,” J. Comput. Phys. 138, pp. 16–56.

�8� Bertoluzza, S., 1996, “Adaptive Wavelet Collocation Method for the Solution
of Burgers Equation,” Transp. Theory Stat. Phys. 25, pp. 339–359.

�9� Rastigejev, Y., and Paolucci, S., 2003, “Wavelet Based Adaptive Multiresolu-
tion Computation of Viscous Reactive Flows,” [Submitted].

�10� Holmström, M., 1999. “Solving Hyperbolic PDEs Using Interpolating Wave-
lets,” SIAM J. Sci. Comput. �USA� 21, pp. 405–420.

�11� Rastigejev, Y., 2002, Multiscale Computations with a Wavelet Adaptive Algo-
rithm, Ph.D. thesis, University of Notre Dame, Notre Dame, IN.

�12� Marchuck, G. I., Kuznetsov, Y., and Matsokin, A. M., 1986, “Fictitious Do-
main and Domain Decomposition Methods,” Sov. J. Num. Anal. Math. Model.,
1, pp. 3–35.

�13� Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D., and Périaux, J., 2001, “A
Fictitious Domain Approach to the Direct Numerical Simulation of Incom-
pressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate
Flow,” J. Comput. Phys., 169, pp. 363–426.

�14� Peskin, C. S., 1977, “Numerical Analysis of Blood Flow in Heart,” J. Comput.
Phys. 25, pp. 220–252.

�15� Beyer, R. P., 1992. “A Computational Model of the Cochlea Using the Im-
mersed Boundary Method,” J. Comput. Phys. 98, pp. 145–162.

�16� Goldstein, D., Handler, R., and Sirovich, L., 1993, “Modeling a No-Slip Flow
Boundary With an External Force Field,” J. Comput. Phys. 105, pp. 354–366.

�17� Angot, P., Bruneau, C.-H., and Fabrie, P., 1999, “A Penalization Method to
Take Into Account Obstacles in Incompressible Viscous Flows,” Numer. Math.
81, pp. 497–520.

�18� Beyer, R. P., and Leveque, R. J., 1992, “Analysis of a One-Dimensional Model
for the Immersed Boundary Method,” SIAM �Soc. Ind. Appl. Math.� J. Numer.
Anal. 29, pp. 332–364.

�19� Khadra, K., Angot, P., Parneix, S., and Caltagirone, J.-P., 2000, “Fictitious
Domain Approach for Numerical Modeling of Navier-Stokes Equations,” Int.
J. Numer. Methods Fluids 34, pp. 651–684.

�20� Donoho, D., 1992, Interpolating Wavelet Transform, Report, Dep. of Statistics,
Stanford University.

�21� Deslauriers, G., and Dubuc, S., 1989, “Symmetric Iterative Interpolation Pro-
cesses,” Constructive Approx. 5, pp. 49–68.

�22� Saito, N., and Beylkin, G., 1993, “Multiresolution Representations Using the
Auto-Correlation Functions of Compactly Supported wavelets,” IEEE Trans.
Signal Process. 41, pp. 3584–3590.

�23� Bertoluzza, S., 1997, “An Adaptive Collocation Method Based on Interpolat-
ing Wavelets,” in Multiscale Wavelet Methods for Partial Differential Equa-
tions, W. D. et al., eds., Vol. 6 of Wavelet Analysis and Its Applications,
Academic, New York, pp. 109–135.

�24� Dahmen, W., 1997, “Wavelet and Multiscale Methods for Operator Equa-
tions,” Acta Numerica 6, pp. 55–228.

�25� Jameson, L., 1998, “A Wavelet-Optimized, Very High Order Numerical
Method,” SIAM J. Sci. Comput. �USA� 19, pp. 1980–2013.

�26� Bertoluzza, S., 1995, “Adaptive Wavelet Collocation for the Solution of
Steady-State Equations,” in Wavelet Applications II: April 17-21, Orlando,
Proc. SPIE 2491, pp. 947–956.

�27� Kim, J., and Moin, P., 1985, “Application of a Fractional-Step Method to
Incompressible Navier-Stokes Equation,” J. Comput. Phys. 59, pp. 308–323.

�28� Gresho, P. M., 1990, “On the Theory of Semi-Implicit Projection Methods for
Viscous Incompressible Flow and Its Implementation Via a Finite Element
Method That Also Introduces a Nearly Consistent Mass Matrix Part I:
Theory,” Int. J. Numer. Methods Fluids 11, pp. 587–620.

�29� Timmermans, L. J. P., Minev, P. D., and Van De Vosse, F. N., 1996, “An
Approximate Projection Scheme for Incompressible Flow Using Spectral Ele-
ments,” Int. J. Numer. Methods Fluids 22, pp. 673–688.

�30� Jin, G., and Braza, M., 1993, “A Nonreflecting Outlet Boundary Condition for
Incompressible Unsteady Navier-Stokes Calculations,” J. Comput. Phys., 107,
pp. 239–253.

�31� Zdravkovich, M. M., 1977, “Review of Flow Interference Between Two Cir-
cular Cylinders in Various Arrangements,” ASME J. Fluids Eng. 99, pp. 618–
633.

�32� Griebel, M., Dornseifer, T., and Neunhoeffer, T., 1998, Numerical Simulation
in Fluid Dynamics: A Practical Introduction, SIAM, Philadelphia, PA.

�33� Shen, J., 1991, “Hopf-Bifucation of the Unsteady Regularized Driven Cavity
Flow,” J. Comput. Phys. 95, pp. 228–245.

�34� Botella, O., and Peyret, R., 1998, “Benchmark Spectral Results on the Lid-
Driven Cavity Flow,” Comput. Fluids 27, pp. 421–433.

�35� Ghia, U., Ghia, K. N., and Shin, C. T., 1982, “High-Re Solutions for Incom-
pressible Flow Using Navier-Stokes Equations and a Multigrid Method,” J.
Comput. Phys., 48, pp. 387-411.

�36� Sani, R. L., and Gresho, P. M., 1994, “Résumé and Remarks on the Open
Boundary Condition Minisymposium,” Int. J. Numer. Methods Fluids 18, pp.
983–1008.

�37� Ol’shanskii, M. A., and Staroverov, V. M., 2000, “On Simulation of Outflow
Boundary Conditions in Finite Difference Calculations for Incompressible
Fluid,” Int. J. Numer. Methods Fluids, 33, pp. 449–534.

�38� Meneghini, J. R., Saltara, F., Siqueira, C. L. R., and Ferrari Jr., J. A., 2001,
“Numerical Simulation of Flow Interference Between Two Cylinders in Tan-
dem and Side-By-Side Arrangements,” J. Fluids Struct. 15, pp. 327–350.

Journal of Fluids Engineering JULY 2005, Vol. 127 / 665

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Steffen Stolz
Institute of Fluid Dynamics, ETH Zurich,

CH-8092 Zürich, Switzerland
e-mail: stolz@ifd.mavt.ethz.ch

High-Pass Filtered Eddy-Viscosity
Models for Large-Eddy
Simulations of Compressible
Wall-Bounded Flows
In this contribution we consider large-eddy simulation (LES) using the high-pass filtered
(HPF) Smagorinsky model of a spatially developing supersonic turbulent boundary layer
at a Mach number of 2.5 and momentum-thickness Reynolds numbers at inflow of �4500.
The HPF eddy-viscosity models employ high-pass filtered quantities instead of the full
velocity field for the computation of the subgrid-scale (SGS) model terms. This approach
has been proposed independently by Vreman (Vreman, A. W., 2003, Phys. Fluids, 15, pp.
L61–L64) and Stolz et al. (Stolz, S., Schlatter, P., Meyer, D., and Kleiser, L., 2003, in
Direct and Large Eddy Simulation V, Kluwer, Dordrecht, pp. 81–88). Different from
classical eddy-viscosity models, such as the Smagorinsky model (Smagorinsky, J., 1963,
Mon. Weath. Rev, 93, pp. 99–164) or the structure-function model (Métais, O. and Le-
sieur, M., 1992, J. Fluid Mech., 239, pp. 157–194) which are among the most often
employed SGS models for LES, the HPF eddy-viscosity models do need neither van
Driest wall damping functions for a correct prediction of the viscous sublayer of wall-
bounded turbulent flows nor a dynamic determination of the coefficient. Furthermore, the
HPF eddy-viscosity models are formulated locally and three-dimensionally in space. For
compressible flows the model is supplemented by a HPF eddy-diffusivity ansatz for the
SGS heat flux in the energy equation. Turbulent inflow conditions are generated by a
rescaling and recycling technique in which the mean and fluctuating part of the turbulent
boundary layer at some distance downstream of inflow is rescaled and reintroduced at the
inflow position (Stolz, S. and Adams, N. A., 2003, Phys. Fluids, 15, pp.
2389–2412). �DOI: 10.1115/1.1949652�

Introduction
Fixed-coefficient eddy-viscosity subgrid-scale �SGS� models

for large-eddy simulations �LESs�, e.g., the Smagorinsky model
�1� or the structure-function �SF� model �2�, require special treat-
ment of the viscous sublayer of wall-bounded turbulent flows. An
ad hoc measure frequently used is the van Driest damping func-
tion for the model coefficient in the near-wall region, which is,
however, designed for special flow situations only �3�. Ideally, the
SGS model used for LES should be defined locally and fully
three-dimensional, i.e., without special treatment of selected spa-
tial directions, and it should not require ad hoc adaptation to the
specific flow configuration. In general, the dynamic Smagorinsky
model �4,5� is defined locally and adapts itself automatically to
different flow situations �e.g., laminar, transitional, and turbulent
flows�. However, it does not necessarily predict a vanishing value
of the model coefficient for laminar flows as it should and can be
singular due to a vanishing strain rate. Furthermore, it is often
used in a nonlocal formulation using averaging in homogeneous
directions.

In this contribution, we consider a different approach for SGS
modeling by analyzing high-pass filtered �HPF� eddy-viscosity
models �6�. The HPF Smagorinsky and HPF structure-function
model were shown to give good results for incompressible turbu-
lent and transitional channel flow �6�. The concept of HPF models
and the relation to the variational multiscale method �7� was pro-
posed recently, independently by Stolz et al. �6� and by Vreman

�8�. However, different from Ref. �6� and this contribution, where
filtering is done with filters proposed in Ref. �9�, filtering is per-
formed in Ref. �8� using a top-hat filter. From a physical point of
view, the HPF models take into account only the most important
interactions between the nonresolved subgrid scales and the re-
solved scales, which take place between the smallest resolved
scales and the largest subgrid scales, while the interactions be-
tween the large-scale flow and subgrid scales are negligible �8,10�.
Compared to the classical fixed-coefficient eddy-viscosity models
based on the full velocity field, the HPF models do predict a
significantly reduced eddy-viscosity in the near-wall region or for
laminar flow regions. For this reason, no van Driest damping or
intermittency functions are necessary.

LESs with the HPF Smagorinsky model of a turbulent com-
pressible boundary layer at high Reynolds number and a direct
comparison of the results to experimental data are the subject of
the present study. The configuration for the turbulent supersonic
boundary layer considered here corresponds to case A in Ref. �11�,
where LES using the approximate deconvolution model �ADM�
�12,13� have been performed. For computational efficiency, only a
relatively short streamwise section of the turbulent boundary layer
is included in the computational domain. Including the spatially
developing boundary-layer transition region would require a sig-
nificantly increased size of the computational domain. The rescal-
ing and recycling method �RRM� as introduced by Stolz and Ad-
ams �11� for compressible flows is employed for generation of
turbulent inflow data. The RRM allows for an easy control of the
desired turbulent boundary-layer properties at a certain down-
stream station, such as the momentum thickness. Furthermore, the
transient region downstream of the inflow required to recover a
developed turbulent boundary layer is rather small.
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Filtered Transport Equations
We solve the filtered Navier-Stokes equations that constitute the

fundamental equations for the resolved conservative variables

��̄, �̄ũ1, �̄ũ2, �̄ũ3, Ě� being the filtered density, filtered momentum,
and total resolved energy, respectively. Filtered quantities are in-

dicated by .̄ Furthermore, Favre-filtered quantities, denoted by ,̃
are computed from a mass-weighted filtering operation �̃=�� / �̄.

Quantities denoted by ˇ are computed according to their definition,
but from filtered variables. The filtered Navier-Stokes equations
are derived following Vreman �14�, and commutation errors due
to a variable filter width are neglected.

The filtered continuity equation is

��̄

�t
+

��̄ũj

�xj
= 0 �1�

and the filtered momentum equations are

��̄ũi

�t
+

�

�xj
��̄ũiũj + p̄�ij − �̌ij� = −

��̄�ij

�xj
+ �i �2�

with the viscous stress tensor and strain rate tensor

�̌ij =
�̌�T̃�
Re

Šij, Šij =
�ũi

�xj
+

�ũj

�xi
−

2

3

�ũl

�xl
�ij ,

respectively. Furthermore, the viscosity �̌ is computed from the

Favre-filtered temperature T̃ according to the Sutherland’s law,

�̌�T̃� = T̃3/2 1 + S

T̃ + S

with Sutherland constant S. The subgrid-scale stresses are

�̄�ij = �̄�uiuj
˜ − ũiũj� �3�

and the subgrid-scale term

�i =
���̄ij − �̌ij�

�xj
�4�

arises from the nonlinearity of the viscous stresses due to the
temperature dependency of the viscosity.

Furthermore, we consider the equation for the total resolved

energy Ě= p̄ / ��−1�+ 1
2�ui�ui / �̄ with � being the ratio of specific

heats cp /cv and p̄ denoting the filtered pressure

�Ě

�t
+

�

�xj
��Ě + p̄�ũj − �̌ijũi + q̌j� = − 	1 − 	2 − 	3 + 	4 + 	5 − 	6

�5�
with the molecular heat flux

q̌j =
�̌�T̃�

�� − 1�Re Pr M2

�T̃

�xj
,

with Pr being the �molecular� Prandtl number and M the reference
Mach number. The subgrid-scale terms occurring in the equation
for the total resolved energy are

	1 = ũi
��̄�ij

�xj
, 	2 =

1

� − 1

�

�xj
�puj − p̄ũj�

	3 = p
�uj

�xj
− p̄

�ũj

�xj
, 	4 = �ij

�ui

�xj
− �̄ij

�ũi

�xj

	5 =
�

�xj
�ũi�̄ij − ũi�̌ij�, 	6 =

�

�xj
�q̄j − q̌j�

where 	1 is the SGS-dissipation and 	2 is the pressure-velocity
correlation, which resembles a turbulent heat flux and describes

the contribution of the subgrid turbulence to the conduction of
heat. The term 	3 is the pressure-dilatation correlation and 	4 can
be physically interpreted as SGS molecular dissipation. The terms
	5 and 	6 represent the SGS diffusion due to the molecular trans-
port of momentum and heat, respectively, and arise from the non-
linearity of the viscous stresses and heat flux.

High-Pass Filtered Eddy-Viscosity Models
Van Driest wall damping functions can be employed with fixed-

coefficient Smagorinsky model for the SGS stresses �̄�ij in order
to reduce too large values for the eddy-viscosity due to the veloc-
ity gradient in the near-wall region. However, such ad hoc mea-
sures are suitable for special flow situations only and require ad-
aptation to the specific flow configuration. Instead of using ad hoc
measures we consider the high-pass filtered �HPF� Smagorinsky
model, which predicts a reduced eddy viscosity in the near-wall
region. With the HPF eddy-viscosity model, a dynamic computa-
tion of the model coefficient is found not to be necessary to cor-
rectly predict near-wall and transitional flows �2�, however, it can,
in principle, also be employed for the determination of the model
coefficient.

The HPF model is based on the fixed-coefficient Smagorinsky
model given by

�̄�ij −
�ij

3
�̄�kk � mij

S
ª − 2�̄�CS
�2	S�ũ�	 · Sij�ũ� = − 2�tSij�ũ�

�6�

with the strain rate

Sij�ũ� =
1

2

 �ũi

�xj
+

�ũj

�xi
−

2

3
�ij

�ũk

�xk
�

and 	S�ũ�	=�2Sij�ũ�Sij�ũ�. For the filter width

= �
x1
x2
x3�1/3 is employed. Note that the grid spacing 
xi is
computed from the grid spacing in the equidistant computational
space and from the Jacobian of the mapping between the physical
and computational space that is employed for the solution of the
differential equations on nonequidistant meshes.

The HPF eddy-viscosity models employ high-pass filtered
quantities H� ũ instead of ũ for the computation of the turbulent
eddy viscosity and strain rate, where H is a suitable high-pass
filter operator. The HPF Smagorinsky model is then given by

mij
HPF = − 2�̄�CS,�c

HPF
�2	S�H � ũ�	 · Sij�H � ũ� = − 2�t
HPFSij�H � ũ�

�7�

Furthermore, the turbulent heat flux 	2 in the equation for the
total resolved energy is modeled by an eddy-diffusivity ansatz
based on the gradient of the high-pass filtered temperature

	2 �
�

�xj

 �t

HPF

�� − 1�Prt M2

��H � T̃�
�xj

� �8�

where the turbulent Prandtl number Prt is set to 0.7. For the SGS
dissipation 	1 no additional model is required as it involves fil-
tered quantities and the subgrid-scale stress tensor only. The other
SGS terms, 	3−	6 and �i, are neglected as they are expected to
be smaller than the SGS terms that are modeled �14,15�.

With suitable filters, high-pass filtered quantities are vanishing
for smooth velocity profiles �e.g., low-order polynomials�, and the
corresponding SGS model contributions are evanescent. High-
pass filtering is performed by subtracting low-pass filtered quan-
tities from the unfiltered ones. A detailed description of the con-
struction of the explicit five-point low-pass filter G used herein
can be found in Ref. �9�. The high-pass filtered quantity is then
given by
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H � ũ = �I − G� � ũ = O�
r� �9�

with r being the order of the low-pass filter G. For arbitrary grids
r=3, however, for equidistant grids odd-numbered moments are
vanishing and r increases to 4 �10�. H� ũ is vanishing if ũ is a
polynomial of up to degree r−1. The cutoff wave number �c,

defined arbitrarily by 	Ĥ��c�	=1/2 where ˆ denotes a Fourier
transform, of the explicit filter employed here is �c�2 /3. In
order to account for the dependency of the model coefficient on
the cutoff wave number �c of the high-pass filter in the range
�c� � /3 ,3 /4�, Stolz et al. �6� proposed an empirical correc-
tion given by

CS,�c

HPF �


 − �c
· C0, �10�

where the recommended value for C0 is 0.1/3, e.g., CS,�c

HPF =0.1 for
�c=2 /3. For this reason the model coefficient is set to 0.1 for
the LES using the explicit filter with �c�2 /3.

Numerical Method
To achieve stability of the LES, a high-order numerical scheme

as proposed by Sandham et al. �16� is used for the solution of the
conservation equations for the filtered density, filtered momentum,
and total resolved energy. The main ingredients are a fourth-order
central spatial difference operator satisfying a summation-by-parts
condition �17�, an entropy-splitting approach which splits Eulerian
fluxes into conservative and nonconservative parts �18,19�, and
usage of fourth-order central scheme for second derivatives in the
viscous term wherever possible �16,17�. For the entropy-splitting
scheme a splitting parameter �=6 is used such that 6 /7 of the
Eulerian fluxes are computed in their conservative form and 1/7
in the entropy splitting form. The parameter is in the region 2
���8 as proposed in Ref. �16�. Note that the numerical scheme
does not introduce artificial dissipation or employ upwinding or
filtering for stabilizing of the numerical integration �16�. Note that
the simulations with the HPF Smagorinsky were found not to be
stable when using the same numerical scheme, i.e., without en-
tropy splitting and with the sixth-order Padé scheme �20�, em-
ployed for simulations with the approximate deconvolution model
�ADM� in Ref. �11�. Conversely, LES with ADM can also be
performed with the more stable numerical scheme used herein for
simulations with the HPF Smagorinsky. The stabilizing mecha-
nism of ADM can be mainly traced back to the relaxation term,
which is also employed for the continuity equation in order to
ensure a well-resolved representation of the filtered solution. It
can also be interpreted as applying a high-order filter to the com-
putational quantities every few time steps and is related to stabi-
lizing of numerical schemes by means of filtering, e.g., Maeder et
al. �21�. In general, the relaxation term effects scales only which
are numerically not well resolved with finite-difference schemes
and are physically meaningless for this reason.

In order to further reduce odd-even oscillations second deriva-
tives for the eddy-viscosity model are discretized directly instead
of using schemes for the first derivative twice. The equations are
integrated in time by an explicit low-storage third-order Runge-
Kutta scheme �22�. Simulations model were found not to be stable
when no SGS model is used, demonstrating the necessity of the
SGS model in the considered case.

Configuration and Results
We consider a spatially developing supersonic turbulent bound-

ary layer at a free-stream Mach number of M�=2.5 and Reynolds
number based on the mean momentum thickness �2,in at the inflow
and the viscosity at the wall of Re�2,in

�u��2 /�w��2200; based on
the momentum thickness �2 and the free-stream viscosity,
Re�=u��2 /���4500. If not mentioned otherwise, �2,in is used as
reference length. The Reynolds numbers Re�0,in

and Re�1,in
, based

on the 99.5% boundary layer thickness �0,in and the displacement
thickness �1,in at the inflow, respectively, and the free-stream vis-
cosity u� is given in Table 1. The Reynolds numbers are in a
range where experimental data is available, e.g., collected by
Fernholz and Finley in Refs. �23–25�. The size of the computa-
tional domain for all cases is 220�2,in in the streamwise, 22�2,in in
the spanwise, and 55�2,in in the wall-normal direction. The
streamwise and spanwise coordinates are denoted by x1 and x2,
respectively.

A detailed description of the parameters is given in Table 1.
Note that the distance of the first grid point off the wall 
x3

+�1� has
to be chosen smaller than in Ref. �11� and four grid points �ex-
cluding point at the wall boundary� are contained in the range up
to x3

+�10 instead of 2 points in Ref. �11� in order to obtain a good
prediction of critical boundary-layer properties. However, the
same total number of grid points in the wall-normal direction is
used. The reason for the necessity of an increased resolution in the
near-wall region is mainly due to the different SGS model. LES
with ADM on the same grid as used in Ref. �11�, however, em-
ploying the numerical scheme used herein results in a deviation in
the skin-friction coefficient of only about 5%, which is signifi-
cantly less than the deviation due to the different SGS model
�using the same grid and numerical scheme�. For comparison, data
obtained with ADM using the same grid and numerical scheme as
employed herein for the LES with the HPF Smagorinsky are also
shown.

Turbulent inflow conditions for our boundary-layer simulations
are generated by a rescaling and recycling method �RRM� follow-
ing that of Lund et al. �26�, simplified and extended to compress-
ible flows by Stolz and Adams �11�. The mean-flow profiles, in
terms of the wall-normal coordinate x3 and time t for the stream-
wise and the wall-normal velocity, density, and the temperature,
and the corresponding fluctuation fields, are sampled at a refer-
ence station xr downstream of inflow �Fig. 1�. The mean value of
the spanwise velocity is set to zero. The mean flow profiles for the
RRM are computed with a sliding time average by employing a
second-order discrete Butterworth filter with a characteristic time

Table 1 Parameters of the numerical simulation

HPF Smag. ADM HPF Smag./ADM

M�
2.5 Lx1

220�2,in
Pr 0.72 Lx2

22�2,in

Re�0,in
59,265 63,325 Lx3

55�2,in

Re�1,in
15,572 17,988 xr 88�2,in

Re�,in
4535 4531 N1

251
Re�2,in

2200 2199 N2
51

�0,in 13.1�2,in 14.0�2,in N3
101

T�
* 140 K 
x1

+ 41

TW 2.25T�
* 
x2

+ 21

S* 110.4 K 
x3

+�1� 1.6

Fig. 1 Schematic of the rescaling and recycling technique
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scale of Ts8�0,in /u� �11�. Except for the mean profiles at the
reference station xr, only the boundary-layer thicknesses �0,r and
�2,r have to be determined for the generation of the turbulent
inflow data. Different from the technique proposed by Lund et al.
�26�, it is not necessary to compute the skin friction at the refer-
ence station.

Two-point correlations for the density, velocity components,
and temperature demonstrate decorrelation of the fluctuations over
half the domain length in the spanwise direction and half the
distance of sampling station used for RRM from the inflow xr in
the streamwise direction, which indicates that the computational
domain and the downstream distance of sampling station for the
RRM are chosen large enough, �see Fig. 13 and Ref. �11��.

At the outflow and the upper truncation plane a nonreflecting
boundary condition is employed. Additionally, a sponge layer is
used �27� near the outflow and upper truncation plane. For the
latter, free-stream conditions are imposed on the density, velocity,
and temperature. The wall is assumed to be isothermal, and no-
slip conditions are imposed on the velocity. Furthermore, periodic
boundary conditions are employed in the homogeneous spanwise
direction.

Mean Flow. Statistical averaging is performed in time over a
period of �100�0 /U� and in space over the homogeneous span-
wise direction and is indicated with angular brackets. The simu-
lation was started with turbulent LES data of Ref. �11� and con-
ducted for about 150�0 /U�, i.e., until a statistically steady state
was reached, before sampling was performed. With the RRM, we
did not observe a drift in the boundary-layer properties during the
sampling time which can also anticipated from Fig. 2 of Ref. �11�.

The streamwise evolution of the Reynolds number Re�2
based

on the momentum thickness and the viscosity at the wall is shown
in Fig. 2. Transient regions near the inflow and outflow boundaries
where the solution is not considered to be physically meaningful
are indicated by thin lines. The transient region near inflow is a
consequence of the inflow-data generation procedure, whereas the
one near the outflow is a result of the sponge-layer outflow bound-
ary condition. The transient region near the inflow extends over
approximately 3�0,in�40�2,in. A small kink can be observed ap-
proximately 1.8�0,in�25�2,in downstream of the inflow plane.
This kink is due to a standing pressure wave originating from the
near-wall region at the inflow.

A challenging task for numerical simulations is to predict the
experimentally observed skin-friction coefficient Cf

=2��̌�ũ1 /�x3� /Re and shape factor H12= ��1� / ��2�. The former
requires a correct representation of the near-wall turbulence phe-
nomena, whereas the latter also requires a sufficient accuracy
within the outer layer. ũ1=�u1 / �̄ denotes the Favre-filtered
�density-weighted� downstream velocity component, and �̌ is the
dynamic viscosity computed according to Sutherland’s law using

the temperature T̃. A comparison of the downstream evolution of
Cf with experimental data of Coles �23,28�, Mabey �23,25�, and
Shutts et al. �23� as function of Re�2

is shown in Fig. 3�a�. Cor-
responding values of the direct-numerical simulation �DNS� of
Guarini et al. �29� at M�=2.5 are also shown. The agreement of
the skin-friction coefficient Cf predicted by LES with a regression
of the experimental data is very good for both SGS models. Even
within the transient region at the inflow �indicated by thin lines�
Cf differs by no more than about 3% from the experimental re-
gression, which is well within the respective standard deviations.
Note that data for the region affected by the sponge layer near the
outflow is omitted in Fig. 3 as they are physically meaningless.
The shape factor H12 is underpredicted by the simulation in com-
parison to experimental data, by about 10% with HPF Smagorin-
sky and is not predicted as well as with ADM, see Fig. 3�b�.
However, the value of H12 is still in the range predicted by some
experiments and close to the result of the DNS of Guarini et al.

Fig. 2 Reynolds number Re�2
based on the momentum thick-

ness �2 and the viscosity at the wall �w shown with thick lines
for the LES with HPF Smagorinsky model over the downstream
coordinate; thin lines indicate transient regions at the inflow
due to the RRM procedure and due to the sponge-layer at
outflow

Fig. 3 „a… Skin friction coefficient CF and „b… shape factor H12
over Re�2

; —HPF Smagorinsky model and —�—ADM; � ex-
periments of Coles †23,28‡, Mabey †23,25‡ and Shutts et al. †23‡,
� DNS data of Guarini et al. †29‡, ----regression of experimental
data „Cf=0.01026 Re�2

−0.21, H12=6.71 Re�2
−0.062

…, ----regression �
standard deviation
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�29� at a much lower Reynolds number. Note that the scatter in the
experimental data for H12 is larger than that for Cf and the regres-
sion analysis is less reliable �the dashed lines indicate the respec-
tive standard deviations�.

The mean-flow profiles for the streamwise mass flux ��u1�,
streamwise velocity �ũ1�, and temperature �T̃� are shown in Fig. 4
and compared to experimental data of Mabey �23� at a Mach
number of 2.5 and Reynolds numbers ranging within 3099
�Re�2

�9095 �cases 74020100–74020302 of Ref. �23��. Compu-
tational results are evaluated at 10 equidistantly spaced down-
stream stations for x1 between 3�0,in and 14.5�0,in �region away
from inflow transient and upstream of the sponge region at out-
flow�. All data shown subsequently collapse for the different
downstream stations when plotted according to the scaling laws,
demonstrating that the LES data exhibits the correct spatial evo-
lution of the boundary layer. For this reason only averaged �ac-
cording to the scaling laws� profiles are shown in the correspond-
ing figures. The agreement for the mean streamwise momentum
and velocity is very good. A small difference between the compu-
tational and experimental temperature profiles is caused by the
slightly different wall temperatures in the experiment
�Tw�2.13� and in the simulation �Tw=2.25�. Profiles compen-

sated for this difference ��T̃�−Tw� / �T�−Tw� are in good
agreement.

The mean streamwise velocity profiles and the van Driest trans-
formed velocity profiles plotted in wall units are shown in Fig. 5.
The van Driest transformed velocity profiles �30� computed by

�ũ1�+,VD =
1

�
ln z+ + C �11�

show a very good agreement with the law of the wall with the
standard parameters of Fernholz and Finley �24�, �=0.40 and C
=5.1, for turbulent boundary layers along adiabatic walls. The
linear and logarithmic regions for the parameter sets of Fernholz
and Finley is indicated in Fig. 5.

For the outer-layer profiles an outer scaling using the Rotta
integral length scale

L =
1

u�
�

0

�0

�ũ1�
VD − ũ1

VD�dx3 �12�

is applied. Formulated for compressible flows the empirical law of
the wake �31� is

�ũ1��
+,VD − �ũ1�+,VD = − 4.7 ln
 x3

L � − 6.74. �13�

The LES results show an excellent agreement with the law of the
wake for x3 /L�0.05 �see Fig. 6�.

The Favre-averaged total temperature ��Ť0� / ��� with

Ť0 = T̃ + �� − 1�M�
2 ũ1

2 + ũ2
2 + ũ3

2

2
�14�

is almost constant across the boundary layer �see Fig. 7�. As ex-
pected from experimental data the mean total temperature de-
creases near the wall and has its maximum slightly below the
boundary layer edge �32�.

Turbulence Statistics. Experimental data for the Reynolds
stresses are not available for the experiments of Coles and Mabey
cited above. Other experimental data show a considerable scatter,
so that we follow the suggestion of Guarini et al. �29� to compare
the density-weighted Reynolds stresses with DNS data for incom-
pressible boundary layers of Spalart �33�. Comparison of density-
weighted Reynolds stresses with incompressible data was also
proposed by Morkovin �34� and was found to be appropriate for
Mach numbers up to at least 5 �32,35�. Guarini et al. �29� found a
good agreement between their supersonic DNS results and Spal-
art’s incompressible DNS data when scaling the velocity fluctua-
tions by the square root of the density profile. Furthermore, they
have shown that when plotting the data over x3 /�0 �instead of x3

+�
the position of the peak strongly depends on the Reynolds num-

Fig. 4 Mean-flow profiles, —Šũ1‹,¯¯·· Š�u1‹, ----ŠT̃‹, and —·—

„ŠT̃‹−Tw… / „T�−Tw…; Lines: LES, Symbols: Experiments of Ma-
bey †23‡; „a… HPF Smagorinsky model and „b… ADM

Fig. 5 Downstream-velocity profiles scaled in wall units, ----
Šũ1‹

+ and —Šũ1‹
+,VD for the HPF Smagorinsky model, --�--Šũ1‹

+

and —�—Šũ1‹
+,VD for ADM „shifted by 10…; also shown are the

linear law, —and the logarithmic law with ln„x3
+
… /0.4+5.1,----
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ber. The Reynolds normal stresses, computed as ��̄ũi�ũi��, are
shown in Fig. 8. The double prime indicates a fluctuation with
respect to the Favre time-average ũi�= ũi− ��̄ũi� / ��̄�. The Reynolds
normal stresses for the streamwise and the wall-normal velocity
components are overpredicted in comparison to the DNS data.
The peak of the Reynolds normal stresses is shifted slightly to-
ward the wall. Note that the DNS data are unfiltered, but they are
also at a significantly lower Re� than the LES. The Reynolds
normal stresses for the spanwise velocity component and the Rey-
nolds shear stress, computed as ��̄ū1�ũ3��, exhibits a good agree-
ment with Spalart’s incompressible DNS data for both SGS mod-
els �see Fig. 9�.

To quantify compressibility effects commonly the turbulence
Mach number Mt is used

Mt =
�ũ1�

2 + ũ2�
2 + ũ3�

2�
�c�

�15�

with c being the speed of sound. Alternatively, the fluctuating
Mach number

M� = ��M − �M��2�1/2 �16�

with M =M�ũ1 /�T̃ can be employed �see Fig. 10�. Different from
the turbulence Mach number the fluctuating Mach number varies
through both velocity and temperature fluctuations. The peak for
both Mach numbers is located in the vicinity of the wall and
reaches Mach numbers of �0.25. The turbulence Mach number
decreases faster than the fluctuating Mach number to a negligible
value at the boundary-layer edge.

Figure 11 shows the root-mean-square fluctuations of the total

temperature �Ť0�
2� and the fluctuations of the temperature �T̃�2�,

which have almost the same magnitude. The fluctuations of the
temperature are more peaked in the near-wall region than the fluc-
tuations of the total temperature.

Near-wall streaks can be visualized by colors of the wall-
normal vorticity �3, which is shown in Fig. 12 in a wall-parallel
plane at x3

+�11. It is obvious that the computational box accom-
modates several streaks in the streamwise and spanwise direc-
tions. The streak spacing length. is apparent from the two-point
correlations for the density, velocity components, and temperature
depicted in Fig. 13 in the same wall-parallel plane. The two-point
correlations in spanwise direction for wall-normal velocity w ex-
hibit a peak at about 80–120 wall units, which corresponds to

Fig. 6 Mean-flow profiles in outer scaling Šũ1‹�
+,VD−Šũ1‹

+,VD:
—HPF Smagorinsky model „scale on bottom…, —�—ADM
„scale on top…, and ----law of the wake −4.7 ln„z /L…−6.74

Fig. 7 Favre-averaged total temperature Ť0, —HPF Smagorin-
sky model

Fig. 8 Reynolds normal stresses normalized with ��wu�
2: solid

lines �Š�̄ũ1�ũ1�‹, dashed lines �Š�̄ũ2�ũ2�‹, and long- dashed lines
�Š�̄ũ3�ũ3�‹; —HPF Smagorinsky model and —�—ADM; symbols
are DNS data of Spalart †33‡, ÃRe�=1410 and +Re�=670

Fig. 9 Reynolds shear stress Š�̄ũ1�ũ3�‹ /u�
2, —HPF Smagorinsky

model and —�—ADM; Symbols are incompressible DNS data
of Spalart †33‡, ÃRe�=1410 and +Re�=670
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roughly five grid points.
The highly intermittent boundary-layer edge is depicted by den-

sity distributions in a longitudinal cross section �Fig. 14�.

Conclusions
A compressible turbulent boundary layer at M�=2.5 and com-

parably large Reynolds numbers of 2200�Re�2
�2510 has been

computed by means of large-eddy simulation �LES� with the
fixed-coefficient high-pass filtered �HPF� Smagorinsky model
�6,8� supplemented by a HPF eddy-diffusivity ansatz for the SGS
heat flux. With respect to the boundary-layer thickness and the
free-stream viscosity the covered Reynolds number range is
59265�Re�0

�69356. The Reynolds number range is well within
that of available experimental data. The LES results are compared
to experimental data of Coles �23,28�, Mabey �23,25�, and Shutts

et al. �23�. The results obtained agree reasonably well with experi-
mental data and theoretical results, such as the law of the wall and
the law of the wake. The density-weighted Reynolds stresses are
compared with the incompressible DNS data of Spalart �33�. For
comparison, data of LES with the approximate deconvolution
model �ADM� �12,13� is also shown.

The rescaling and recycling method �11� is employed for
inflow-data generation. Using this technique, inflow data are gen-
erated concurrently with the ongoing simulation by sampling the
boundary layer at some distance downstream of the inflow. For
stability of the simulations a numerical method following
Sandham et al. �16� based on entropy splitting, usage of finite-
difference approximations for second derivatives and finite-
difference operators satisfying a summation-by-parts condition
has to be used.

Fig. 10 Turbulence Mach number Mt for HPF Smagorinsky
model, —and fluctuating Mach number M�, ----

Fig. 11 Relative Favre fluctuations of the total temperature Ť0,
----, and of the temperature T̃, —for HPF Smagorinsky model

Fig. 12 Instantaneous 	z distribution for HPF Smagorinsky
model in a x1-x2 plane; x3

+É11

Fig. 13 Two-point correlations for HPF Smagorinsky model in
„a… x2 direction and x1 direction at x3

+É11; ----�, —u,¯¯·· v, —
w, and —·—T

Fig. 14 Instantaneous density distribution in a x1-x3 plane,
0.4< �̄<1.1
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Implementation of a Level Set
Interface Tracking Method in the
FIDAP and CFX-4 Codes
We present a streamline-upwind–Petrov-Galerkin (SUPG) finite element level set method
that may be implemented into commercial computational fluid dynamics (CFD) software,
both finite element (FE) and finite volume (FV) based, to solve problems involving in-
compressible, two-phase flows with moving interfaces. The method can be used on both
structured and unstructured grids. Two formulations are given. The first considers the
coupled motion of the two phases and is implemented within the framework of the com-
mercial CFD code CFX-4. The second can be applied for those gas-liquid flows for which
effects of the gaseous phase on the motion of the liquid phase are negligible; conse-
quently, the gaseous phase is removed from consideration. This level set formulation is
implemented in the commercial CFD code FIDAP. The resulting level set formulations are
tested and validated on sample problems involving two-phase flows with density ratios of
the order of 103 and viscosity ratios as high as 1.6�105. �DOI: 10.1115/1.1949636�

Keywords: Two-Phase Flow, Interface Tracking, Level Set, Finite Element, Finite
Volume, CFX, FIDAP, Validation

Introduction
The present work is concerned with modeling of two-phase,

incompressible flows with the phases separated by a distinct in-
terface. In general, the phases are assumed to have different val-
ues for density and viscosity. Numerical modeling of such inter-
facial flows requires the use of special interface-tracking
procedures, such as the front-tracking method �1�, the boundary
integral method �2�, the phase-field method �3�, the Second Gra-
dient method �4�, the volume-of-fluid �VOF� method �5,6�, or the
level set method �see, for example, Sethian �7�, or the review by
Osher and Fedkiw �8��. Here, we are specifically interested in
developing and implementing the level set method within the
framework of the commercial codes CFX-4 �9� and FIDAP �10�,
codes to which we have ready access.

It should be noted that both the CFX-4 and FIDAP codes have
their own interface-tracking models, which are provided with the
standard code configuration. The model implemented in FIDAP is
of the VOF type, in which the interface geometry is approximated
using the piecewise constant stair-stepped �PCSS� reconstruction
procedure �10�. Although the PCSS VOF interface-tracking
scheme is very robust, it is only first-order accurate �11�. Appli-
cation of this model to interfacial flows with strong surface ten-
sion effects would be degraded below first order because of the
numerical errors resulting from calculating the interface curvature.
The CFX-4 standard interface-tracking model is also first-order ac-
curate and is based on solving a transport equation for the phase
volume fractions, combined with a simple ad hoc algorithm for
regrouping these fractions �surface sharpening algorithm� �9�. As
demonstrated in this paper, in addition to the above-mentioned
lack of accuracy associated with calculating the interface curva-
ture, the CFX-4 standard interface-tracking method is also very
diffusive.

In order to improve the accuracy of the calculations, one would
need to resort to higher-order methods that could be implemented
within the framework of these codes. In the most general type of

application of industrial interfacial flows, simulation needs to be
performed in both two and three dimensions, using structured
and/or unstructured grids. For these reasons, we choose the
streamline-upwind–Petrov-Galerkin �SUPG� finite element �FE�
level set method �12�, because it is second-order accurate, robust,
readily extended to three dimensions, may be adjusted to unstruc-
tured grids, and is easier to program compared to other advanced
interface-tracking methods.

Two formulations of the SUPG FE level set method are pre-
sented here. The first considers coupled motion of the two phases.
Away from the interface, the fluid properties are set to be those of
the appropriate constituent phases, whereas in the vicinity of the
interface they are interpolated appropriately to ensure a smooth
transition from one phase to the other. We refer to this approach as
the fluid-fluid formulation.

The second formulation considers gas-liquid flows in which the
gaseous phase has a negligible effect on the motion of the liquid
phase. Applications include hydraulic flows in open containers
and mold-filling processes in metallurgy, provided that there is no
air entrainment in the liquid phase. When modeling such flows,
the gaseous phase can be considered a region of void. This ap-
proach, which we refer to as the fluid-void formulation, is obvi-
ously less general than the fluid-fluid approach. On the other hand,
since no fluid flow equations need to be solved in the void region,
the fluid-void formulation is computationally more efficient. We
implement the fluid-fluid formulation within the framework of the
code CFX-4, and the fluid-void formulation into FIDAP.

It should be noted that, in the traditional level set method for
incompressible flows, the fluid flow and interface-tracking equa-
tions are written in the nonconservative form. This approach has
been used successfully over a wide range of applications for two-
phase flows �e.g., �13–19��. To our knowledge, the conservative
form of the fluid flow and level set interface-tracking equations
has been used and validated only once, by Sussman and Puckett
�20� in the coupled level set-VOF �CLSVOF� method. The mixed
level set formulations, which involve the conservative form of the
fluid flow equations and nonconservative form of the interface-
tracking equations, have been used before for compressible flow
modeling �see, e.g., �21��; however, as far as the incompressible
flows are concerned, there is clearly a lack of information. Nev-
ertheless, the mixed formulation has a strong potential from the
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point of view of implementation into commercial CFD codes,
since many of these incorporate conservative finite volume �FV�
flow solvers. Thus, a distinctive feature of the fluid-fluid model
that we implement into the code CFX-4 is the coupling of the
nonconservative FE level set interface-tracking method to the con-
servative FV Navier-Stokes solver.

Problem Formulation
The local equations governing the motion of an unsteady, vis-

cous, incompressible, isothermal, immiscible two-phase liquid are
the Navier-Stokes equations, which in conservative form are given
as

���u�
�t

+ � · ��u � u� = B − � p + � · �2�D� �1a�

��

�t
+ � · ��u� = 0 �1b�

where u is the velocity vector, � is the density, t is time, p is the
pressure, B is the body force, � is the dynamic viscosity, and D is
the rate of deformation tensor, with the components Dij =

1
2 �ui,j

+uj,i�. The total stress tensor � is given by �=−pI+2�D, where I
is the identity matrix.

The surface tension acting on the interfacial surface �l, creates
a jump of the normal stress across the interface, which in tensor
notation is represented by

���ijnj���l
= ��ni �2�

where the notation ��� denotes the jump in value of � , � is the
curvature of �l , � is the surface tension, and n is the unit vector
normal to �l.

In the level set method, the interface between the two phases is
represented by a continuous scalar function 	�x , t�, which is set to
zero on the interface, is positive on one side, and negative on the
other. This way both phases are identified, and the location of the
physical interface is associated with the surface 	=0. The func-
tion 	 is called the level set function and is typically defined as
the signed distance to the interface; i.e., 	=−d�x , t� on one side of
the interface and 	= +d�x , t� on the other, where d�x , t� is the
shortest distance from the point x to the interface.

When the interface is advected by the flow, the evolution of the
level set function is given by

�	

�t
+ u · � 	 = 0 �3�

In the level set fluid-fluid formulation, the density and viscosity
are typically interpolated across the interface as follows:

��x,t� = �2 + ��1 − �2�H
�	�x,t�� �4a�

��x,t� = �2 + ��1 − �2�H
�	�x,t�� �4b�

where subscripts 1 and 2 denote the values corresponding, respec-
tively, to the two different phases. Here, H
�	� is a smoothed
Heaviside function, which is used instead of the discontinuous
function to aid numerical stability �13�. By virtue of Eq. �4a�, we
note that ��x , t�=��	�x , t��, which together with Eqs. �1b� and �3�,
reduces to the continuity condition � ·u=0. In the fluid-void for-
mulation, the interpolation procedure defined by Eq. �4� does not
need to be applied, since there is only one phase present in the
model.

Following the work of Sussman et al. �13�, we use the follow-
ing expression for H
�	�:

H
�	� = �0 if 	 � − 


�	 + 
�/�2
� + sin��	/
�/�2�� if �	�  


1 if 	 � 

� �5�

where 
 is a small parameter of the order of the size of a mesh cell
close to the interface. By using the smoothed Heaviside function
defined in Eq. �5�, one effectively assigns the interface a fixed
finite thickness of 2
, over which the phase properties are inter-
polated. Hence, the value of 
 can be considered to be the half-
thickness of the numerical interface.

The surface tension can be modeled numerically as a body
force, Bst, concentrated at the interface �see, e.g., �6,18��. Here,
the distribution of Bst near the interface is approximated as

Bst = ���	�n���	� �6�

where ���	� is the smoothed delta function defined as the deriva-
tive of the H��	� in Eq. �5� with respect to 	. The normal to the
interface n and curvature � are given by

n =
�	

� � 	�
, ��	� = � ·

�	

� � 	�
. �7�

Addition of the body force Bst to the right-hand side of Eq. �1a�
effectively removes the explicit boundary condition given by
Eq. �2� from the problem formulation.

When solving the advection equation �3�, the level set function
	�x , t� ceases to be the signed distance from the interface, even if
it is properly initialized at t=0. However, in order to interpolate
the phase properties in the fluid-fluid formulation according to
Eqs. �4�, it is necessary to keep the level set function equal to the
signed distance function d�x , t� at all times. As mentioned before,
this interpolation is not strictly needed for the fluid-void formula-
tion, though it is still important to keep the distribution of 	 equal
to the signed distance from the interface in order to avoid strong
numerical diffusion �22�. Consequently, both level set formula-
tions need to reinitialize 	 regularly, preferably at every time step.
An efficient method to do this was proposed by Sussman and
Fatemi �15�, and is based on solving for the steady-state solution
of the following equation:

�	

��
+ sign�	0��� � 	� − 1� = ��
�	�� � 	� �8�

where � is a timelike variable �different from the physical time t�,
	0 is the initial distribution of the level set function before reini-
tialization, and � is a correction coefficient calculated in such a
way as to ensure mass conservation up to the first-order term in
the Taylor expansion of the integral over the domain ���H
�	�d	
�for details, see �15��.

Sussman and Fatemi �15� demonstrated numerically that the
solution of Eq. �8� converges to the signed distance function dis-
tribution around the interface and displays good mass-
conservation properties. In the original formulation, the reinitial-
ization problem was solved using the essentially nonoscillatory
�ENO� finite-difference scheme. Finite-difference schemes, how-
ever, are difficult to apply on irregular, body-fitted grids. At the
same time, the nonconservative form of Eq. �8� precludes the use
of FV schemes. In our work, we adapt the Sussman and Fatemi
level set formulation to the second-order SUPG FE method; the
latter is employed to solve both the advection equation �3� and the
level set reinitialization equation �8�.

Various FE formulations of the level set method have been used
before by Tornberg and Engquist �19�, Hetu and Ilinca �23�, Pil-
lapakkam and Singh �24�, and Chessa and Belytschko �25�. In
these works, the authors used the FE method to solve both the
level set and fluid flow equations. We employ this approach when
implementing the level set method into FIDAP. However, in the
fluid-fluid model that we implement in CFX-4, we use the FE
method only to solve the level set equations �3� and �8�, whereas
the fluid flow equations �1� are solved using the conservative finite
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volume scheme. To our knowledge, this combination of FE and
FV methods has never been used before in the level set modeling
of two-phase flows.

Implementation of the Level Set Method Within CFX-4. In
CFX-4, the Navier-Stokes equations are solved in the conservative
form, as given by Eqs. �1�, using the second-order FV method.
The code uses structured grids, though the computational cells can
be skewed. Thus, the level set �3� and �8� and fluid-flow �1� equa-
tions form a mixed FE-FV formulation. We introduce the level set
interface-tracking subroutines into CFX-4 via the standard set of
user subroutines, with the level set function to provide the fluid
configuration and the CFX-4 solver being used to generate the flow
velocity field.

In the CFX-4 two-phase solver, the properties of the two-phase
mixture are approximated as

��x,t� = �1F1�x,t� + �2F2�x,t� �9a�

��x,t� = �1F1�x,t� + �2F2�x,t� �9b�

where Fi�x , t� , i=1, 2, are phase volume fractions. Consequently,
in order to approximate the phase properties according to the level
set model defined by Eqs. �4�, the phase volume fractions are
described in the following way:

F1�x,t� = H
�	�x,t��, F2�x,t� = 1 − H
�	�x,t�� �10�

where H
�	� is the smoothed Heaviside function introduced ear-
lier. We specify the phase volume fractions defined by Eq. �10� at
every time step by overwriting the corresponding entries gener-
ated internally by CFX-4. Note that these expressions are only ap-
proximations because of the use of H
�	�, rather than the discon-
tinuous Heaviside function H�	�.

In CFX-4, all variables, including velocity, pressure, and bulk
body forces, are defined at cell centers. The boundary conditions
are imposed by introducing so-called boundary nodes, located at
the centers of the cell faces bordering the fluid domain, and by
using dummy cells on the other side of the boundary. In the SUPG
FE method, however, variables are defined at element vertices. If
the same mesh is used to solve both the fluid flow equations �1�
and the level set equations �3� and �8�, then interpolation proce-
dures would have to be invoked to transfer information between
cell centers and vertices. Using such interpolation procedures
would result in smearing of the interface, and the accuracy of the
solution would be thereby degraded. For this reason, in addition to
the FV mesh used to solve the Navier-Stokes equations, we intro-
duce a FE mesh whose vertices are constructed from the center
and boundary nodes belonging to the FV mesh. This idea is illus-
trated in Fig. 1. Note that construction of the FE mesh requires the
introduction of new type of nodes, not present in the FV mesh.
The new nodes are placed on the edges and corners of the external
boundaries of the fluid domain. Velocities at such nodes are pre-

scribed based on the appropriate �free-slip or no-slip� boundary
conditions. The FE elements constructed in this way are hexahe-
drals, and isoparametric bilinear shape functions are employed.

In the present work, the FE mesh is constructed over the entire
FV grid. This procedure requires an additional amount of com-
puter storage; in particular, for three-dimensional problems the
amount of computer memory allocated to the FE and FV grids is
approximately double that occupied by the FV grid alone. How-
ever, the computer resources can be much more efficiently utilized
if the finite elements are placed only in that part of the computa-
tional domain where the interface actually moves. This option will
be implemented in the future.

The values of the normal to the interface n and curvature �
have to be calculated at the centers of the FV cells, which, as
explained earlier, also are the vertices of the finite elements. In the
SUPG FE method, however, the gradient of the solution �	 is not
uniquely defined at element nodes, since it is a discontinuous
function across the element edges. Consequently, to calculate n
and � at a FE node, we average their corresponding values from
the neighboring elements. This procedure can be employed on
both structured and unstructured grids. Consider, for example, the
node i and the group of elements Kj

i , j=1, . . . ,Ne, all sharing the
same vertex i. Denote the volumes of these elements as Vj. In
each element Kj

i, we first calculate the gradient of 	 at the center
of the element. The vectors n j are then averaged over the elements
in the selected group, Kj

i, to obtain the average normal 	ni
 at
vertex i. Later, the nodal distribution of 	ni
 is used in an analo-
gous manner to estimate the averaged curvature 	�i
. Thus,

	ni
 =��
j=1

Ne

1

Vj
−1

�
j=1

Ne

n j

Vj
, 	�i
 =��

j=1

Ne

1

Vj
−1

�
j=1

Ne

� · 	n j

Vj

�11�

The overlaying of FV and FE grids, as shown in Fig. 1, also offers
a new way of handling the no-slip velocity boundary condition. It
is known that in numerical simulations involving an interface slid-
ing along a solid boundary with an imposed no-slip condition, the
part of the interface located inside the boundary layer can remain
motionless or can lag far behind the main front �e.g., �22��. In
such situations, the interface experiences significant and unrealis-
tic stretching. This numerical artifact is a result of the inconsis-
tency of the no-slip boundary condition in the vicinity of the con-
tact line of the interface with the wall �26�. The free surface
actually rolls over the wall, but the scale of this phenomenon is
too small to resolve it using standard continuum equations. Here,
the Navier-Stokes equations �1� are solved together with the no-
slip boundary condition, whereas the level set advection equation
�3� is solved using the modified velocity field in which the tan-
gential velocities at boundary nodes are assigned to be equal to
those of the nearest inner FV nodes. For other possible ways of
handling the no-slip boundary condition in the context of level set
modeling �see �17��.

The flux quantities on cell boundaries are computed in CFX-4

using the Rhie-Chow algorithm �27�. Space differencing is cen-
tered, except for the advection quantities where a variety of
schemes are available. Here, we use the second-order “higher up-
wind differencing scheme,” in which velocities on control-volume
faces are obtained by extrapolation from two upwind points. A
second-order, backward scheme is used for the time discretization.
The discretized equations are solved using a nested �inner and
outer� iteration technique based on the SIMPLEC velocity-pressure
coupling algorithm �28�.

Implementation of the Level Set Method Within FIDAP. Our
experience shows that it is not possible at the user level to over-
write the phase volume fractions in FIDAP as one does in CFX-4,
since the corresponding data structures cannot be readily ac-
cessed. For this reason, it does not seem possible to implement the

Fig. 1 Construction of the FE mesh by overlaying the FV grid.
Schematic of grids, nodes, and elements. The dashed lines
show the edges of the finite elements.
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fluid-fluid level set formulation within FIDAP without modifying
the source code or having appropriate data structures available to
the user. Consequently, only the fluid-void approach, which con-
siders the motion of only one phase, has been attempted with this
code.

In the traditional fluid-void model, the computational domain
consists of two regions: fluid and void �5�. However, the level set
function 	 must be continuous across the interface and, therefore,
has to be defined in both the fluid and void regions. In order to
advect 	, some “extension” velocity field has to be generated
inside the void region near free surface in such a way as to be
consistent with the flow velocity at the interface. To do this, a
buffer zone is constructed ahead of the moving free surface �7�. A
schematic of the computational domain is shown in Fig. 2. Three
nonoverlapping regions are identified within the computational
domain �: the fluid region � f, the buffer zone �b, and the empty
region �e, so that �=� f ��b��e. In the numerical implemen-
tation, those mesh cells that contain the interface itself are in-
cluded in the fluid region � f.

In the fluid region � f, the flow is modeled with the Navier-
Stokes equations in the nonconservative form

�L� �u

�t
+ u · � u� = B − � p + � · �2�LD� , �12a�

� · u = 0 �12b�

where the subscript L indicates the phase properties associated
with the liquid phase in � f.

In the buffer zone, �b, the extension velocity field is artificially
generated. It should be noted that there is no unique definition of
the extension velocity field, and so there is considerable freedom
available in constructing it �29,30�. Certainly, the extension veloc-
ity ub should, in the limit as one approaches the zero level set,
yield the physical velocity of the interface itself. One way of
extending the velocity field into the buffer zone, which still satis-
fies the continuity condition � ·ub=0 and can be applied on both
structured and unstructured grids, has been proposed by Hetu and
Ilinca �23�. This method views the buffer zone as if it were filled
with some fictitious fluid and solves the mass and momentum
conservation equations for this fluid with the prescribed velocity
profile on the interface. In their approach, the fluid inside the
buffer zone is modeled as incompressible, and inertia and gravity
terms are neglected. Thus, in the region �b, the steady Stokes
equations apply:

0 = − � Pb + � · ��b � ub� �13a�

� · ub = 0 �13b�

where the subscript b denotes variables defined inside the buffer
zone.

Equations �13� require velocity boundary conditions. We iden-
tify three different parts of the buffer zone boundary ��b :�bf ,�be,
and �bc, so that ��b=�bf ��be��bc �see Fig. 2�. The surface �bf

separates the buffer zone �b from the fluid region � f, and the
surface �be separates the buffer zone from the empty �e region.
The surface �bc is that part of the boundary ��b which is located
on the container walls. On the interface �bf, the velocity ub is
prescribed as a boundary condition. This velocity is found before-
hand by solving Eqs. �12� for the flow of liquid in � f. On �be, we
impose the zero-traction boundary condition, which means that
the pressure along �be is constant and the tangential stress is zero.
On boundary �bc, different conditions can be applied; in this
work, we employ and test the free-slip and zero-tranction
conditions.

Figure 3 illustrates the idea of how the buffer zone is con-
structed. At each time step, we locate the band of elements con-
taining the interface, which we refer to as the zero-element band.
Then, all the element bands attached to the zero-element band on
the side of the void region are located; each band is assigned a
number, depending on its proximity to the interface. Finally, the
buffer zone is given by the set of element bands. The thickness of
the buffer zone is characterized in terms of the number of the
element band Nb located the farthest from the zero level set.

We solve the Navier-Stokes �12� and Stokes �13� equations,
consecutively, using the second-order SUPG FE method imple-
mented into FIDAP �31�. First, Eqs. �12� are solved �with the zero-
traction condition imposed on �bf�, then Eqs. �13�, and afterward
the level set field is reinitialized. We have found that because of
the inflexibility of FIDAP the only way to implement the fluid-void
model is to solve Eqs. �12� and �13� in separate complete runs at
each time step, while the level set subroutines are run outside of
the FIDAP main environment. This restriction clearly results in
long computation times, and we hope that it will be overcome in
future releases of the code. The velocities and level set function
are defined at element vertices, so that the fluid flow �12� and �13�
and level set �3� and �8� equations are solved on the same mesh.
After each computation, data is exchanged between the level set
subroutines and FIDAP, with FIDAP providing the velocity field in
� f ��b, and the level set subroutines providing the reinitializa-
tion of 	, and the allocation of the domains � f ,�b, and boundary
��b. With FIDAP, both structured and unstructured grids can be
used. Since all the equations are solved using the FE method, the
present level set formulation may be called an FE-FE approach.

Numerical Results
In this section, we apply our numerical method to several se-

lected problems with the purpose of testing and validating the two
level set formulations. We have implemented the fluid-fluid, three-
dimensional level set method into CFX-4, and the two-dimensional
fluid-void level set formulation into FIDAP. The test problems that

Fig. 2 Schematic of the computational domain of the level set
fluid-void formulation. The domain � is divided into three re-
gions: the fluid region �f , the buffer zone �b, and the empty
region �e. The surface �bf separates �b from �f , and �be sepa-
rates �b from �e. The surface �bc is that part of the boundary
of �b located on the container walls.

Fig. 3 Element bands built around the zero level set „shown in
bold…. The shaded region is the “zero-element band.” The blank
and shaded elements are those located in the fluid region �f.
Numbered elements are those located in the buffer zone �b.
Numbers inside elements indicate the element band number.
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we present in the next sections are all two-dimensional or axisym-
metric.

Reinitialization. Barth and Sethian �12� studied, in detail, the
properties of the SUPG FE method applied to the reinitialization
problem defined by the homogeneous version of Eq. �8�, i.e., with
�=0. The right-hand side, ��
�	���	�, was added later by Suss-
man and Fatemi �15�, solely to improve numerical stability. We
apply the SUPG FE method to the nonhomogeneous equation,
with the coefficient � computed using the prediction-correction
procedure proposed by Sussman and Fatemi �15�.

To test the SUPG FE reinitialization procedure, we solve the
problem of reinitialization of the initially distorted level set field
around two contours: a unit circle of radius 1 and a unit square,
both located in the center of the 4�4 domain as shown by the
bold line in the left column of Fig. 4. These contours are defined
as the zero level sets of the function 	 initialized as a discontinu-
ous function �i.e., 	0=−1 inside, 	0= +1 outside, and 	0=0 on
the contour itself�. In both cases, we employ unstructured triangu-
lar grids, since their use is more general compared to structured
grids. The average element edge is used as a measure of the mesh
size h.

The steady-state solutions of Eq. �8� are visualized as level set
contours of function 	 shown by the thin lines in the left column
of Fig. 4. The right column of Fig. 4 shows results of the conver-
gence study. The error E is calculated here with respect to the

exact solution; the subscript indicates the norm used: L� norm, L2
norm, and the Sobolev H1 semi-norm. As one can see, the SUPG
FE formulation is second-order accurate in the L2 and L� norms,
and first-order accurate in the H1 semi-norm in the case of the unit
circle, which provides a smooth solution without shocks �by
shocks we mean the regions where the characteristics of Eq. �8�
cross each other�. These are optimal convergence rates for linear
elements. If the solution develops shocks, as is the case with the
square because of the sharp angles in the zero level set contour,
the SUPG FE formulation is first-order accurate in the L2 and L�

norms, and one-half-order accurate in the H1 semi-norm.
The convergence rates agree with those obtained by Barth and

Sethian �12� and show that the inclusion of the nonhomogeneous
part into Eq. �8� does not reduce the accuracy of the SUPG FE
level set method. Finally, we note that the convergence rate of the
level set interface-tracking scheme can degrade to the first order,
depending on the shape of the interface, in particular, if the shape
of the interface is such that it develops shocks in the solution of
Eq. �8�.

Below, we present results of simulations for problems involving
fluid flow. In such problems, the level set function 	 needs to be
reinitialized only in the O�h� vicinity of the interface. Conse-
quently, the level set equations �3� and �8� are solved only in a
band around the interface. The half-width of the band is set to 4h,
while the time step �� for solving the reinitialization equation �8�
is set to h /2. For flows involving surface tension effects, the level
set field 	 needs to be reinitialized with very high accuracy be-
cause of the need to calculate the interface curvature, and Eq. �8�
is solved for 10 time steps for every new location of the interface
�i.e., for every time step of the Navier-Stokes solver�. For cases
without surface tension, Eq. �8� is solved for five time steps.

Broken-Dam Problem. The broken-dam problem refers to the
collapse of a water column under the effect of gravity. In the
present work, we model the problem configuration used in the
experiment of Martin and Moyce �32�. The two-dimensional com-
putational domain and the initial configuration of the fluid are
shown in Fig. 5. Initially, the water is at rest. At time t=0, the dam
�right wall� supporting the water is instantaneously removed and
the fluid collapses. The properties of the water are set to �L
=1000 kg/m3 and �L=0.001 kg/ms, with the water-air density
and viscosity ratios being 860 and 54, respectively; the accelera-
tion of gravity is g=9.81 m/s2. A free-slip boundary condition is
imposed on all sides of the computational domain, except the top,
where a pressure boundary condition is used. Surface tension ef-
fects are not important in this problem.

For convenience, we introduce the following dimensionless
variables:

u* =
u

�ghc

, x* =
x

hc
, �* =

�

�L
, �* =

�

�Lhc
�ghc

�14a�

t* =
t�ghc

hc
, p* =

p

�Lghc
�14b�

where the initial height of the water column hc is used as the
length scale and the velocity scale is set equal to �ghc. Here, and

Fig. 4 First column: steady-state solutions of the reinitializa-
tion problem defined by Eq. „8… for „a… the unit circle and „b… the
unit square, on the 4Ã4 domain. The bold line shows the zero
level set; the contours of constant � are spaced �x=0.25 apart
from each other. Second column: errors resulting from the con-
vergence study. The mesh is unstructured.

Fig. 5 Schematic diagram of the broken-dam problem.

678 / Vol. 127, JULY 2005 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



later in the text, the asterisk superscript is used to denote dimen-
sionless values.

We solve the problem using both the fluid-void �FIDAP� and
fluid-fluid �CFX-4� level set formulations. In the former case, we
use an unstructured triangular grid, while a regular structured
mesh is used in the latter. A constant time step of �t*=0.2h* is
used in both cases, in which h* is the dimensionless mesh size.
The interfacial thickness parameter is set to 
*=2h*. In the fluid-
void method, a free-slip velocity condition is imposed on bound-
ary �bc, the dimensionless viscosity of the fictitious fluid inside
the buffer zone is set to �b

*=1.0, and the buffer zone thickness is
set to Nb=12. We have found that increasing the buffer zone be-
yond Nb=12 results in negligibly small changes in the solution.

Figure 6 gives snapshots of the solution at different times ob-
tained using the two level set formulations, as well as the solution
obtained on a regular grid using the PCSS VOF fluid-void method
�the FIDAP standard model�. As one can see, the interface shapes
predicted by the level set fluid-fluid formulation and the VOF
fluid void method are very close, except near the container floor
where the free surface obtained using VOF develops perturbations
in the form of square steps. The presence of these perturbations
could clearly cause difficulties in calculating the interface curva-
ture if a surface tension model were to be applied. In the case of
unstructured grids, the steplike perturbations at the interface be-
come more pronounced and develop over the entire free surface
�22�. In contrast, the use of the level set fluid-void method on the
unstructured grid gives a smooth interface, with waves of small
amplitude; these waves develop during the initial stages of the
flow, but later tend to disappear. The level set fluid-fluid model
provides the solution with no noticeable perturbations on the
interface.

Table 1 shows the results of the convergence study. Three so-
lutions were found using grids of different resolution. The posi-
tion of the water front on the container floor xWF

* at time t*=2.5 is
chosen as a target parameter, with the origin being in the lower

left corner of the container. The error E1
i between succeeding

mesh resolutions is computed using the L1
i norm, which is well

suited for interfacial flow problems

E1
i =�

�*

�H�	r� − H�	c��d�* �15�

where H�	� is the discontinuous Heaviside function, and 	r and
	c are solutions from, respectively, refined and coarse grids. As
one can see from the values of E1

i , both level set formulations
display first-order convergence, although formally the SUPG FE
method is second-order accurate. To investigate this issue further,
we conducted additional simulations of the broken-dam problem
in which the sharp corner in the free surface at t=0 was replaced
by smooth arcs of different radii. It was found that the conver-
gence rate of solutions for these simulations was also first order.
Thus, although the sharp angle singularity in the interface cer-
tainly degrades the accuracy of the solution, as was discussed
above, it may not be the only reason for the observed lack of
accuracy.

We believe that in the case of the fluid-void �FIDAP� level set
formulation, the first-order convergence rate of the solution is a
consequence of the insufficiently accurate treatment of the Dirich-
let pressure boundary condition on the interface. Indeed, the sur-
face �bf on which the zero-traction condition is applied is only a
first-order accurate representation of the interface �see Fig. 3�.
Thus, to achieve optimal second-order convergence, it is neces-
sary to enforce the pressure boundary condition on �bf to second-
order accuracy �see, e.g., �30��. On the other hand, the one-order-
of-magnitude reduction in the convergence rate obtained using the
fluid-fluid �CFX-4� level set formulation could be caused by the
large phase density ratio, as discussed by Sussman and Puckett
�20�.

We estimate the effect on the solution of the viscosity of the
fictitious fluid inside the buffer zone in the fluid-void �FIDAP� for-
mulation by performing simulations with different values of �b

*

and, comparing the deviation of the solutions from the reference
solution 	r, obtained with �b

*=1 and Nb=12. The deviation is

calculated as the relative error Ẽ1
i given by

Ẽ1
i =

1


*Li
*�

�*

�H�	� − H�	r��d�* �16�

where Li is the length of the interface. Figure 7 shows the values

of Ẽ1
i as a function of the Reynolds number, Reb=1/�b

*, at differ-
ent times t*. As follows from the figure, the level set solution is
fairly insensitive to the value of �b

*, which can be varied by orders
of magnitude without having a noticeable effect on the solution.

Figure 8 shows results of the sensitivity analysis of the level set
fluid-void solution to the buffer zone thickness Nb. Here again, the

error Ẽ1
i is calculated with respect to the reference solution ob-

tained with �b
*=1 and Nb=12. We note that increasing the buffer

zone thickness leads to smaller dependence of the solution on the
value of Nb. Ultimately, the final choice of the value of Nb for a
particular application depends on the accuracy required. It is im-
portant to note the following fact: we have found that the local

Fig. 6 Fluid configurations for the broken-dam problem at dif-
ferent times obtained by the two level set formulations and the
PCSS VOF method. The latter solution was obtained using a
regular grid. The container dimensions are nondimensionalized
with the value of the initial height of the water column hc. The
average mesh size is h*=0.02.

Table 1 Convergence study of the two SUPG FE level set for-
mulations for the broken-dam problem

h*

Level set fluid-fluid method
�CFX-4�

Level set fluid-void method
�FIDAP�

xWF
* �2.5� E1

i �2.5� xWF
* �2.5� E1

i �2.5�

0.08 4.29 N/A 4.17 N/A
0.04 4.40 2.55·10−2 4.38 1.06·10−1

0.02 4.49 1.11·10−2 4.46 5.49·10−2
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decrease of the buffer zone thickness below Nb=3, which can
occur in many practical applications, can result in localized oscil-
lations on the interface and relatively large errors in the solution.
This problem needs further investigation, and we will report on its
progress in a future communication.

To investigate the effect on the solution of the boundary condi-
tion imposed on �bc, an additional simulation has been performed
with the zero-traction condition imposed on �bc instead of the
free-slip condition; the difference between the two solutions is

measured using the error Ẽ1
i . The results are given in Table 2.

Evidently, the solution is not sensitive to which of the two bound-
ary conditions is used for �bc.

Figure 9 shows the variation of the mass of water M as a func-
tion of time for two meshes of different resolution. The fluid-void
formulation clearly demonstrates smaller mass variations �which
suggests better mass conservation properties� compared to the
fluid-fluid formulation.

The resulting positions of the water front on the container floor
as a function of time, obtained using the two level set formula-
tions and the VOF method, are shown in Fig. 10. This figure also

Table 2 The difference between two solutions of the broken-dam problem obtained using the
FE-FE level set fluid-void formulation „FIDAP… with, respectively, the free-slip and zero-traction
conditions imposed on boundary �bc. Here, we use �b

* =1 and Nb=12. The mesh is unstruc-
tured, with resolution h*=0.02.

t* 0.5 1.0 1.5 2.0 2.5

Li
* 1.94 2.17 2.81 3.61 4.49

Ẽ1
i 1.76·10−3 3.46·10−3 3.60·10−3 3.61·10−3 3.35·10−3

Fig. 7 Effect of the viscosity of the fictitious fluid inside the
buffer zone on the level set fluid-void solution

Fig. 8 Effect of the buffer zone thickness Nb on the level set
fluid-void solution. The error Ẽ1

i is calculated in terms of the
solution obtained with Reb=1 and Nb=12.

Fig. 9 Variation of the mass of water as a function of time in
the level set solution of the broken-dam problem for two mesh
resolutions

Fig. 10 Comparison of the predicted water front positions with
the experimental data for the broken-dam problem.
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Table 3 Experimental and numerical values for the characteristic times and heights of the
collapsing water cylinder. Numerical data: case 1, level set CFX, free-slip condition; case 2,
level set CFX, no-slip condition; case 3, PLIC VOF †34‡; and case 4, CFX standard method with
surface sharpening †34‡. The experimental values were obtained by Munz and Maschek †33‡.

Case t1 �s� t2 �s� H2 �mm� t3 �s� H3 �mm�

1 0.19 0.39 181 0.91 355
2 0.19 0.39 179 0.90 342
3 0.23 0.36 93 0.85 �355.2
4 0.22 0.40 128 0.88 150

Exp 0.20±0.02 0.42±0.02 160±10 0.88±0.04 400±50

Fig. 11 Collapsing cylinder of water: left column shows pictures obtained experimentally by Munz and Maschek †33‡; right
column shows the numerical predictions obtained using the FE-FV level set fluid-fluid formulation „CFX-4… for the free and no-slip
boundary conditions. Rows correspond to characteristic times t0 , t1 , t2, and t3.
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shows the experimental data obtained by Martin and Moyce �32�.
It should be noted that Martin and Moyce normalized their experi-
mental data for the water front positions by setting xWF

* �0.8�
=1.44. This was done due to difficulties in recording the exact
“start time” of the motion. To be consistent with their data, we
have normalized our numerical results the same way. The numeri-
cal and experimental curves xWF

* �t*� are in very good agreement
during the initial stages of the flow, but the agreement deteriorates
somewhat after t*=1.8. This could be the result of three-
dimensional effects appearing in the experiment.

Collapsing Cylinder of Water. The problem of a collapsing
water cylinder under gravity has been studied experimentally by
Munz and Maschek �33�. A photograph of the experimental setup
is shown in Fig. 11�a�. Initially, a water column of diameter 11 cm
and height 20 cm is supported by a glass cylinder and contained in
a larger cylindrical container of diameter 44.4 cm. At t0=0, the
smaller cylinder is “instantaneously” removed from the top, and
the water column slumps under gravity and flows across the con-
tainer floor.

Because of the intensive air entrainment in the flow, the col-
lapsing cylinder problem cannot be simulated using the level set
fluid-void formulation. Consequently, we solve the problem using
the FE-FV level set fluid-fluid formulation implemented into
CFX-4. Due to axial symmetry, the computational domain of the
size 22.2 cm�40 cm represents only one-half of the container in
cylindrical coordinates. A regular grid of cell size h=4.44 mm has
been used for this simulation. The chosen mesh resolution is iden-
tical to that used by Meier �34�, who simulated the same problem
using the second-order accurate piecewise-linear interface con-
struction �PLIC� VOF method.

For comparison purposes, we employ both free and no-slip ve-
locity boundary conditions on the floor and container walls, while
a constant pressure boundary condition is imposed on the upper
horizontal side of the computational domain. Because of small-
scale air bubbles entrained in the flow, we cannot resolve the
surface tension effects with our limited computer resources.
Therefore, surface tension effects, though considered important in
later transient stages, are not considered in this simulation. The
interfacial thickness parameter 
* is set to 2h*, as before.

Figures 11�b�–11�d� are snapshots of the flow taken during the
experiment, and Figs. 11�f�–11�h� show numerical predictions of
the free surface at the same times. In the early part of the tran-
sient, a cylindrical water wave runs outward and reaches the con-
tainer wall at time t1, as shown in Figs. 11�b� and 11�f� and
reaches a maximum height on the wall H2 at time t2, as shown in
Figs. 11�c� and 11�g�. At this moment, the flow reverses, the liquid
rolls back, and finally produces a large spout of height H3 in the
center of the container at time t3 �Figs. 11�d� and 11�h��. Having
formed the spout, the motion again reverses and the water falls
back under gravity. Surprisingly, the front profiles obtained nu-
merically using the free and no-slip boundary conditions are very
similar up to time t2. For t� t2, the difference between the two
numerical solutions starts to increase, most likely due to the de-
veloping mixing in the flow.

Comparing the water front profiles obtained in this work
against those of Meier �34�, one notes that the level set method
predicts separation of water from the vertical container wall at t
= t3, as shown in Fig. 11�h�, whereas in the Meier’s PLIC-VOF
method, the water stays in contact with the wall during the entire
time of spout development. Of the two, the level set prediction is
the one in accord with the experiment �Fig. 11�d��.

Table 3 shows characteristic times and dimensions observed in
the experiment, together with those from numerical solutions. The
data obtained by Meier �34� and those obtained with CFX-4 using
the standard interface-tracking method with surface sharpening
are also given in the table. It should be noted that the numerical
predictions of the spout formation have to be interpreted with
care, since at this stage the water front experiences fragmentation

into small droplets and bubbles, and none of the methods consid-
ered can capture these phenomena accurately with the given mesh
resolution. Overall, the level set formulation provides the most
accurate results of the three methods discussed.

Figure 12 shows mass variations with time for the level set
solutions. Taking into account the coarseness of the mesh we have
used, the mass conservation is acceptable for t�0.6 s. At later
times, the flow is characterized by the formation of small, en-
trained air bubbles of the size of the mesh cells, and the interface
develops high curvature �see Fig. 11�h��. This, in turn, results in
strong numerical diffusion and a large mass accumulation. In or-
der to improve mass conservation, one needs to either refine the
mesh or use an adaptive projection level set formulation �16� in
which there is local mesh refinement in regions of high curvature.

Bubble Rising in a Viscous Fluid. Modeling of a rising bubble
in a viscous fluid is a popular benchmark problem for interface
tracking methods �13,14,16�. Here, we simulate the case of an air
bubble rising in a sugar-water solution, the problem studied ex-
perimentally by Bhaga and Weber �35�. In the experiment, the
viscosity of the solution �L was varied by about an order of mag-
nitude by changing the concentration of sugar, but the density �L
and surface tension � of the liquid changed very little, with a
maximum variation of 4%. However, the exact data for each test
case were not reported. Consequently, in our work, we have set
the solution density and surface tension to the average values
measured in the experiment: �L=1.35 kg/m3 and �=0.078 N/m.
We consider three water solutions of different viscosities: �L
=2.73, 1.28, and 0.54 kg/ms. The corresponding liquid-air den-
sity ratio is 1050, and the viscosity ratios are 1.6�105 ,7.5�104,
and 3.2�104, respectively, for the three cases examined.

Initially, at t=0, the bubble is approximated as a sphere of
diameter de= �6V /��1/3, where V is the volume. In the experiment,
the volume of the generated bubbles was 9.3 cm3, so that de
=2.61 cm. The problem is assumed axially symmetric; therefore,
we model only half of the bubble on a rectangular computational
domain of size 2.5de�10de in cylindrical coordinates. The initial
velocity field is set to zero everywhere. At the sides of the fluid
domain, except the symmetry line at r=0, far-field boundary con-
ditions are employed �i.e., we assume that the pressure on the
walls is p=�Lgz, where z is the vertical coordinate�. The interfa-
cial thickness parameter is set to 
*=2h*.

For comparison purposes, we simulate the problem using both
the level set fluid-fluid formulation and the standard CFX-4

interface-tracking method. We found that the use of the latter, in

Fig. 12 Variation of mass of water as a function of time in the
solution for the collapsing water cylinder obtained using the
level set fluid-fluid method; the mesh size is 4.44 mm.
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combination with the surface-sharpening algorithm, resulted in
numerical instabilities. Consequently, the surface-sharpening al-
gorithm is not used for these simulations.

To characterize the problem, we use the Eötvös number, Eo
=gde

2�L /�, and the Morton number, Mo=g�L
4 / ��L�3�. The Mor-

ton numbers for the three bubbles are 848, 41.1, and 1.31. Since
the Eötvös number does not depend on viscosity, it is the same in
all cases considered and equal to 116.

In the course of preliminary simulations, we found that the first
two bubbles, with Mo=848 and 41.1, attain steady-state configu-
rations quite rapidly, with terminal shape and constant rise veloc-
ity. In contrast, the third bubble, with Mo=1.31, does not reach
steady state: it develops a slowly growing “skirt,” and its rise
velocity, after reaching a seemingly terminal value at approxi-
mately t=0.2 s, starts varying with time again.

Table 4 presents results of the convergence study undertaken
for bubbles with Mo=848 and 41.1. Here, the error is estimated
according to Eq. �15�. We choose the value of the terminal veloc-
ity Ut as a target parameter. Due to limited computer resources
available, convergence is studied by successively refining the
mesh size using a ratio of 2 /3 �rather than 1/2�, with the smallest
mesh size being h*=0.044, where h*=2h /de. As one can see, this
mesh provides acceptable accuracy. The convergence rate is of the
order of O�h3/2� in the norm L1

i . This conclusion agrees well with
that of Sussman and Puckett �20�, who modeled an axisymmetric,
inviscid air bubble rising in water with the CLSVOF method.

We employ the CFX-4 standard interface-tracking method using
the same problem formulation and mesh as those used for the
level set simulations. The cross sections of the bubbles at different
times, obtained using the two methods, are shown in Tables 5 and
6. The bubble shapes predicted using the CFX-4 standard method
are visualized by locating the isosurface of FA=0.5, where FA is
the volume fraction of air. As was mentioned before, the bubbles
in the level set simulations for Mo=848 and 41.1 attain steady-
state configurations within 0.25 s. The shapes of these bubbles are
of the oblate ellipsoidal cap type; this result agrees well with the
experimental data of Bhaga and Weber �35�. In contrast, with the
CFX-4 standard interface-tracking method, the bubbles never reach
steady state, but instead slowly transform into toroidal structures
and eventually become completely diffused due to numerical
diffusion.

The difference between the results obtained using the level set

method and the CFX-4 standard interface-tracking method can also
be clearly seen in Figs. 13 and 14. The first figure shows the
bubble rise velocity �defined as the velocity of the center of mass�
as a function of time. The second figure shows the bubble mass as
a function of time �the mass of the bubble is that enclosed by the
isosurface FA=0.5 for the CFX-4 solution�. Clearly, the use of the
level set method results in good mass conservation. The CFX-4

standard method, however, is very diffusive, explaining why the
bubbles never reach steady state, but instead become diffused over
the computational domain and eventually disappear, as can be
seen in Table 6. The excessive mass loss evident in Fig. 14�b� is
associated with this disappearance.

Table 7 gives numerical and experimental values of the terminal

Table 4 Convergence study of the FE-FV level set fluid-fluid
method for the problem of a rising bubble in a viscous fluid for
Eo=116

h*

Mo=848 Mo=41.1

Ut�cm/s� E1
i �0.25s� Ut�cm/s� E1

i �0.25s�

0.1 19.67 N/A 25.44 N/A
0.067 19.37 7.72·10−2 25.67 6.39·10−2

0.044 19.22 4.41·10−2 25.78 2.92·10−2

Table 5 Columns 2–6 show cross sections of the bubble at
different times, as computed using the FE-FV level set fluid-
fluid method implemented into CFX-4. The last column shows
the side view of the bubble observed in the experiment of
Bhaga and Weber †35‡. In all three cases, Eo=116.

Table 6 Cross sections of the bubble at different times, as
computed using the CFX-4 standard interface-tracking method
without surface sharpening

Fig. 13 Bubble rise velocity as a function of time: „a… level set
solution and „b… standard CFX-4 model
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rise velocities and the dimensionless height and width of the fully
developed bubbles for Mo=848 and 41.1, as obtained using the
level set method. The bubble height lb is defined as the difference
between the highest and lowest points on the bubble surface, and
the width wb as the diameter of the horizontal cross section of the
bubble with largest area. Clearly, there is good agreement between
the experimentally measured terminal rise velocities and numeri-
cal predictions: the difference is �1%. The agreement between
the dimensionless bubble heights and widths is also good, despite
the relatively large experimental uncertainty in measuring the lin-
ear dimensions of the bubbles which was, �7% according to
Bhaga and Weber �35�, .

The growing bubble skirt, predicted in the simulation for Mo
=1.31, seems to be in contradiction with the experimental obser-

vations of Bhaga and Weber �35�. The problem of the develop-
ment of unphysical skirts in two-dimensional and axisymmetrical
simulations of bubbles rising in viscous fluids has been reported
before by Sussman and Smereka �14� and Ginzburg and Wittum
�36�, who used the level set and VOF methods, respectively. We
believe that the numerical artifact of skirt formation in the cited
simulations, as well as in our simulation for bubble Mo=1.31, is a
consequence of two possible causes. The first is the effect of the
initial condition on the steady-state configuration of the bubble.
Earlier, Koh and Leal �37� found experimentally that an air bubble
in viscous castor oil could develop into a spherical shape, or de-
velop an unstable skirt, depending on the initial shape of the
bubble. Hence, it is possible that the skirt formation in our simu-
lation for bubble Mo=1.31 is a result of the inappropriate approxi-
mation of the initial shape of the bubble, at t=0, as a sphere, and
that this ultimately resulted in exciting one of the unstable modes.
The second possible cause is the limitation of the axisymmetrical
model, which cannot resolve capillary instabilities developing on
the bubble surface. Tomiyama et al. �38� modeled the same
bubble, with Mo=1.31, using a three-dimensional VOF model and
did not predict any skirt formation. Consequently, in order to in-
vestigate this issue, it is necessary to conduct a numerical study of
the sensitivity of a bubble to initial conditions using a three-
dimensional level set model. This study will be pursued at a later
date.

Computational Overhead Due to Level Set Modeling. As
mentioned earlier, the inflexibility of FIDAP results in inefficient
level set simulations: approximately 80% of the CPU time is spent
on read-write operations. This results in a tenfold slowdown in
code performance.

In contrast, the package CFX-4 allows inclusion of the level set
model into the code in quite an efficient way. To evaluate the
computational overhead of the level set model within the frame-
work of CFX-4, we have separately calculated the CPU times in-
volved in solving the level set �3� and �8� and the Navier-Stokes
�1� equations. The most time-consuming operation in this case is
the reinitialization procedure, which is performed once per fluid
time step, whereas the solution of Eq. �3� is obtained very quickly
because of its linear form. In the course of reinitialization, Eq. �8�
is solved for N�� time steps. The value of N�� is set in advance,
depending on the problem.

All CFX-4 simulations have been conducted using a workstation
with a 833 MHz AlphaServer DS20 processor. Results are given
in Table 8 in terms of the average CPU time per iteration CPUit

ave

and the average number of iterations per time step Nit
ave for both

the level set and Navier-Stokes iterative solvers. As can be seen,
the computational overhead of the level set model is problem
dependent. It should be emphasized that we have not attempted to
optimize the performance of the level set iterative solver. In addi-
tion, the total CPU times will also depend on the convergence
criteria chosen for the solvers. Consequently, the overall increase
in CPU times given in Table 8 should be viewed only as order-
of-magnitude estimates. In the case of the collapsing water cylin-
der problem, the computational overhead due to the level set mod-
eling is quite high; this is a consequence of the formation of a
long interface of complex shape in the later stages of the simula-
tion. In the other two cases, the increase in CPU times resulting
from the level set computation is reasonable.

Conclusions
We have presented a streamline-upwind–Petrov-Galerkin finite

element level set method that may be implemented within the
framework of commercial CFD codes �both FE and FV based� for
solving problems involving incompressible, two-phase flows with
moving interfaces. Two formulations have been considered: fluid-
fluid and fluid-void, which differ in the way the interaction be-
tween the phases is treated.

Fig. 14 Bubble mass as a function of time in the problem of a
rising bubble: „a… level set solution and „b… standard CFX-4

Table 7 Experimental „exp… and numerical „num… terminal rise
velocities, and dimensionless heights and widths of the fully
developed bubbles. The numerical data were obtained using
the FE-FV level set method. The experimental data are taken
from Figs. 3 and 5 of Bhaga and Weber †35‡.

Mo Case Ut�cm/s� wb /de lb /de

848
exp 19.14 1.14 0.71
num 19.22 1.12 0.76

41.1
exp 26.02 1.25 0.65
num 25.78 1.22 0.69
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The first level set formulation simulates the coupled motion of
the two phases. Away from the interface, the fluid properties are
set to be those of the appropriate constituent phases, whereas in
the vicinity of the interface they are interpolated across the inter-
face to ensure smooth transition from one phase to the other. We
have implemented this formulation within the commercial code
CFX-4, in which the fluid-flow equations are solved using a finite
volume method. Therefore, the joint solution of the level set and
fluid-flow equations is termed the FE-FV combination.

The second formulation is used for gas-liquid flows in which
effects of the gaseous phase on the motion of the liquid phase are
negligibly small. This formulation is implemented into the com-
mercial code FIDAP, in which the fluid-flow equations are also
solved using the SUPG FE method. In this case, the joint solution
of the fluid-flow and level set equations is termed the FE-FE ap-
proach.

We have applied the SUPG FE level set method to several
problems involving two-phase incompressible flows with density
ratios of the order of 103 and viscosity ratios as high as 1.6
�105. Both structured and unstructured grids have been used.
Surface tension effects have also been considered. The numerical
results obtained have been compared against available experimen-
tal data. We have demonstrated that the SUPG FE level set
method provides robust convergence and accurate results. We
have also shown that the SUPG FE level set method displays good
mass conservation properties, provided the mesh is adequate for
the problem.

The successful implementation of the level set method within
the framework of the commercial CFD codes FIDAP and CFX-4, as
demonstrated in the present paper, broadens the scope of applica-
bility of these codes, since the method offers new opportunities
for handling problems that cannot be solved to the same level of
accuracy �or cannot be solved at all� using the codes’ standard
interface-tracking models. The range of problems for which the
SUPG FE level set method can offer better robustness and accu-
racy includes those with strong surface tension effects and for
which interface tracking is considered in the context of unstruc-
tured grids.
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Fluids
The dripping problem of a viscoplastic (yield-stress) liquid running slowly out of a
narrow vertical tube is considered. The volume of the drops which break away is deter-
mined. A Lagrangian coordinate system is used to analyze the extension of the thread as
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1 Introduction
Dripping and drop formation have practical applications rang-

ing from separation processes in the chemical and petrochemical
industries to more modern ones, such as ink-jet printing and mi-
croarraying �1–3�. Theoretical, experimental, and computational
studies of the dripping problem have been presented by many
authors see, for example, �4–9�.

In the present work it is supposed that a liquid runs out of the
open end of a narrow tube pointing vertically downward. Various
flow regimes may be established, a continuous jet, for example, or
a sequence of slowly growing pendant drops. Both these regimes
have been extensively studied �10–12�.

We are interested in determining droplet sizes of a viscous fluid
in the situation where the flow rate is neither large nor small, but
somewhere in between, so that it cannot form a jet. Instead, a drop
forms and grows slowly into a short thread or column; this thread
stretches under its own weight and snaps off. Then the upper part
recoils fairly rapidly to form a new drop, and the process repeats
so that a periodic dripping process will be seen. This was done for
the Newtonian liquid by Wilson �7� The purpose of the present
paper is to extend that work to the case of fluids exhibiting a yield
stress �viscoplastic liquids�.

For the rheological description of the fluid we shall use the
so-called biviscosity model. This is a simple generalization of the
well-known Bingham model in which the unyielded material is
supposed to behave as a Newtonian liquid of “large” viscosity,
and is one that avoids certain indeterminacies that stem from the
assumption �in the Bingham model� of absolute rigidity. The
model has been critically discussed by Barnes and Walters �13�
who show that it accords with the real behavior at least as well as
the Bingham model. It has the advantage of being relatively easy
to handle, analytically. Typical materials described by this model
are wet concrete, soft foods, greases, and gels.

To our knowledge this is the first use of models of this type in
this problem. Note that the fluid has a yield stress but no memory,
and an important theoretical interest is to locate and track the
yield surface.

As in Wilson �7� a simple quasi-one-dimensional approach is
used. The balance of forces is between gravity and longitudinal
viscous stresses. Capillarity and inertia are neglected. The ap-
proximation will fail near the bottom of the thread and probably
during the recoil process, but again the breakaway volume will
not be much affected.

2 Analysis
Now we deal with our problem by analyzing the motion from

the instant when a thread of liquid first emerges from the tube and
extends downward, stretching somewhat under its own weight.
We continue up to the time when the first drop falls away, then we
estimate the size of the first drop, which is part of our interest. We
then turn to the periodic dripping motion, which is established
after a time.

We shall adopt the procedures and notations used by Wilson �7�
for the Newtonian fluid, where a Lagrangian coordinate system is
employed. We label the fluid particles by the time T at which they
emerged from the tube. Thus if t is the present time, we have 0
�T� t, with T=0 on the bottom end of the thread and T= t on the
fluid element, which is emerging at the present instant �see Fig. 1�.

Let X�T , t� be the distance below the orifice of a typical particle
P, labeled by T, at time t, and let A�T , t� be its cross-sectional
area. We suppose that the volume flow rate Q is constant. Then
considering two neighboring elements T and T+dT, the equation
of conservation of volume reads

QdT = − A dX

i.e.,

A
�X

�T
= − Q �1�

Next we consider the force balance on the fluid between T and
T+dT, denoting longitudinal stress by S�T , t�. �The sign conven-
tion here is that positive S corresponds to tension.� We find

�SA�T − �SA�T+dT − �gA dX = 0 �2�
Thus,

�

�T
�SA� = − �gA

�X

�T
= �gQ �3�

which can be integrated to give

SA = �gQT �4�

because S=0 at T=0. Of course, this equation has a simple inter-
pretation that the longitudinal force at P equals the weight of all
the fluid below.

Capillarity was included in the equations of motion by Wilson
�7�, who showed that its importance is measured by the dimen-
sionless parameter ����gQ�−1/2. We are supposing that this is
very small. For example, with �=5�10−4 kg s−2, �=105 Pa s
�see Fig. 3 in �13��, �=1�103 kg m−3 and Q=1�10−4 m3/s, we
find ����gQ�−1/2=5�10−6.

Now we select the biviscosity model to characterize viscoplas-
tic fluids. This model assumes that the material behaves as a New-
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tonian fluid with very large viscosity until the critical “yield
stress” is exceeded. Above the yield stress, the material has a
rapidly decreasing viscosity �see, for example, �14–16��. Thus,

�ij = 2�1eij;
1

2
�ij�ij � �1

2

�ij = 2�2eij +
�o

�2eijeij�1/2eij;
1

2
�ij�ij 	 �1

2 �5�

where �ij is the deviatoric stress tensor, eij is the strain rate tensor,
and �o and �1 are two distinguished stresses �see Fig. 2�. The
stresses are related by

�o = �1�1 − 
� �6�

where 
 is the dimensionless ratio �2 /�1, and the Bingham model
is approached in the limit 
→0 �
=1 gives the Newtonian case�.
Barnes and Walters �13�, by using an accurate rheometer, give
experimental evidence that shows some flow of viscoplastic liq-
uids can occur at stresses less than the yield stress, and they found
that these liquids demonstrate �approximately� Newtonian behav-
ior in this region, with a very large viscosity. These results moti-
vate the use of biviscosity model to characterize viscoplastic flu-
ids.

We continue the theory for the biviscosity model. The longitu-
dinal stress is given by

S = 3�1a;
1

2
�ij�ij � �1

2

S = ��2 +
�o

�3a
�3a;

1

2
�ij�ij 	 �1

2 �7�

where a�t�=−Ȧ /A. �The strain rate for a fluid cylinder of length

L�t� is L̇ /L which is the same as −Ȧ /A.�
As the first part of the emerged liquid will be unyielded, that is,

Newtonian with viscosity �1, we combine Eq. �4� and �7� as fol-
lows:

3�1a =
�gQT

A

i.e.,

�A

�t
= −

�gQT

3�1
�8�

By integrating �8� we get

A = Ao −
�gQ

3�1
�Tt − T2� �9�

where Ao is the tube cross-sectional area and the initial condition

A = Ao at t = T �10�

has been used. Equation �9� represents the cross-sectional area of
the unyielded part of the thread.

Next we have to find the cross-sectional area of the yielded part
of the thread. The yield criterion will be satisfied sooner or later
on any fluid particle because A decreases and, thus, S increases
�from �4��. But it is not clear which element yields first. This
problem will be discussed later in this section. Using the yield
criterion, �1/2��ij�ij =�1

2, and Eq. �5�, we get

�1 � 3a = �1 �11�

Equations �8� and �11� may be combined to give

A =
�gQT

�3�1
�12�

where A is the area of the fluid element T when it reaches the
yield point. From �9� and �12�, we get

�gQT

�3�1
= Ao −

�gQ

3�1
�Tt − T2� �13�

By scaling A with Ao and t and T with �Ao�2 /�gQ�1/2, the dimen-
sionless form of �12� and �13�, respectively, is given by

A = kT �14�

kT = 1 −



3
�Tt − T2� �15�

where k= �1/�1���gQ�2 /3Ao�1/2.
Summing this up, for the fluid element T �14� gives the area

when it reaches the yield point and �15� gives the time t. And as
T� t, then the diagram of �15� will be as shown in Fig. 3.

In Fig. 3, the curve of �15� divides the region, bounded by T
� t and t�0, into two parts. The shaded part represents all the
points �t ,T� for which the fluid is unyielded, whereas the un-
shaded part represents all the points �t ,T� for which the fluid is
yielded.

We can understand this in the following way. The history of any
particular fluid element T consists of a line parallel to the t axis,
beginning on T= t and proceeding to the right. Initially A=1 of
course. The two curves in Fig. 3 intersect at T=1/k. For a fluid
element for which T�1/k, which is on the sector OC, A	kT and
the fluid is below the yield point. As t increases, A decreases and

Fig. 1 Sketch indicating the coordinate system

Fig. 2 Biviscosity model with � as tress and � as strain
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the fluid element yields at the value of t corresponding to the
curve �15�. For elements where T	1/k, which is beyond C, the
fluid emerges already yielded.

This implies that the area of the fluid element at the yield point
is given by

A = 1, t = T kT 	 1

A = kT, t = T +
3


T
�1 − kT� kT � 1 �16�

�see Fig. 3�.
Now, we find the cross-sectional area of the yielded part of the

thread; that is, when �1/2��ij�ij 	�1
2. From �4� and �7�, we get

��2 +
�o

�3a
�3a . A = �gQT

that is,

Ȧ −
�o

�3�2
A = −

�gQT

3�2
�17�

The dimensionless form of �17� is given by

Ȧ − lA = −
1

3
T �18�

where l=�o�Ao /�gQ�2�1/2. Note that 3lk= �1−
�. Since �18� ap-
plies only after the yield point has been reached, the initial con-
dition is not A=1 on t=T in all cases but is given by �16�. So we
get

A = �1 −
T

3l
�exp�l�t − T�� +

T

3l
, kT 	 1

A = �k −
1

3l
�T exp�− l�T +

3


T
�1 − kT� − t�	 +

T

3l
, kT � 1

�19�
Now we want to discover which element shrinks to zero first

�Tc� and the time at which this occurs �tc�. Of course, this will not
happen in the unyielded part of the thread because the longitudinal
stress S�T , t� will exceed the yield stress �1 before the element
snaps. This is clear from �7� and �11� ��13a	�1�3a=�1�. This
means that the element that shrinks to zero first must belong to the
yielded part of the thread where we have two cases.

When kT	1, from �19� we set A=0 and combine the resulting
equation with its derivative with respect to T to get

Tc = U �20�
and

tc = U +
1

l
ln� U

U − 3l
� �21�

where U= �3l+�9l2+12� /2.
When kT�1, from �19� with similar steps as above we get

Tc =�3



�22�

and

tc =�3



+�


3
−

3k



+

1

l
ln� 1

1 − 3kl
� �23�

Now we have to decide which value of Tc is smaller, whether it
is the value in �20� or that in �22�. In fact, it depends on the values
of 
 and k. For many engineering materials of yield stress type,
the value of 
 is �10−2. Thus, it appears that, in practice, the
smaller value of Tc is given by �20�.

3 Periodic Dripping
Now we consider periodic dripping. Suppose we set t=0 at the

instant when a drop breaks away. At this instant, the fluid element
just emerging is labeled T=0 and the fluid element at the bottom
of the remaining thread is labeled T=−To, which is to be deter-
mined �see Fig. 4�. We have to replace �4� by

SA = �gQ�T + To� �24�
and then proceed almost exactly as above until we get

A = �1 −
T + To

3l
�exp�l�t − T�� +

T + To

3l
, r 	 1

A = �r −
1

3l
��T + To�exp
− l�T +

3



� 1

T + To
− k� − t	�

+
T + To

3l
, r � 1 �25�

where r=k�T+To�.
Suppose ts is the time at which the new drop breaks away and

that it does so at the element Ts; then the volume left behind is
ts−Ts. If the dripping is periodic, then this volume must equal To,
so that what is left behind each drop here will be the same as what
was left behind the first drop. Hence,

ts − Ts = To

or

ts = Ts + To �26�
Again we want to discover which element shrinks to zero first

�Ts� and the time at which this occurs �ts�. In other words we have
to find To. Once again we have two cases.

When k�T+To�	1, by using �25� and �26� we get, instead of
�20� and �21�,

Ts = U −
1

l
ln� U

U − 3l
� �27�

and

ts = U �28�
where

To =
1

l
ln� U

U − 3l
� �29�

When k�T+To��1, by using �25� and �26� we get, instead of �22�
and �23�,

Fig. 3 Diagram of Eq. „15… with Tp a typical history of a fluid
element.
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Ts =
3k



−

1

l
ln� 1

1 − 3kl
� �30�

and

ts =�3



�31�

where

To =�3



−

3k



+

1

l
ln� 1

1 − 3kl
� �32�

Again because of the assumption 
�10−2, the value of ts in �28�
is smaller than that in �31�. This implies that the value of To is that
which is given in �29�, and the drips have volume ts=U= �3l
+�9l2+12� /2.

4 Concluding Remarks

1. The thread of a biviscosity fluid that runs out of the tube
ruptures only in its yielded part.

2. The volume of the drops Tc and the period of the periodic
dripping To of the biviscosity fluid depend on the values of 

and k. And if we take 
�10−2, as the case of many engi-
neering materials of yield stress, then

Tc = U = �3l + �9l2 + 12�/2
and

To = �1/l�ln�U/�U − 3l��

Tc and To are given in dimensional form by

Tc = U = �3�o�Ao/�gQ�2�1/2 + � �9�o
2Ao/�gQ�2� + 12�/2

and

To = ��gQ�2/�o
2Ao�1/2ln�U/�U − 3�o�Ao/�gQ�2�1/2�
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Computational Fluid Dynamics
Modeling of Impinging Gas-Jet
Systems: I. Assessment of Eddy
Viscosity Models
Computational fluid dynamics plays an important role in engineering design. To gain
insight into solving problems involving complex industrial flows, such as impinging gas-
jet systems (IJS), an evaluation of several eddy viscosity models, applied to these IJS has
been made. Good agreement with experimental mean values for the field velocities and
Nusselt number was obtained, but velocity fluctuations and local values of Nusselt num-
ber along the wall disagree with the experiments in some cases. Experiments show a
clear relation between the nozzle-to-plate distance and the Nusselt number at the stag-
nation point. Those trends were only reproduced by some of the numerical experiments.
The conclusions of this study are useful in the field of heat transfer predictions in indus-
trial IJS devices, and therefore for its design. �DOI: 10.1115/1.1949634�

Keywords: CFD, Eddy Viscosity, Heat Transfer, Impinging Jet, Numerical Modeling,
RANS Turbulence Model, Velocity Field

1 Introduction
Heating or cooling of large surface products is often carried out

in devices called impinging jets systems �IJS�. These devices con-
sist of a single round or slot nozzle �SRN and SSN, respectively�,
through which air or another fluid impinges, in a tilted or vertical
direction, on a product surface �see Fig. 1�. Frequently, the
nozzles are arranged forming an array. Such impinging flow de-
vices allow relatively high heat transfer rates.

Jet impingement is one of the oldest and most attractive tech-
niques for convective process intensification where convective
heating, cooling, or drying is applied. In order to achieve a suit-
able device design, both from an economic and a technical view-
point, knowledge about the dependence of the heat and mass
transfer rates on the external variables is required. The gas flow
rate, the turbulence characteristics at the nozzle, the angle of im-
pingement, the diameter �or slot width� of the nozzles, their spac-
ing, and their distance to the product surface are the main vari-
ables, which can be chosen to identify the Nusselt or Stanton
number for a given heat or mass transfer problem. It is essential
that the effects of these important parameters are identified and
understood, and to do so, both extensive experimental and com-
putational fluid dynamics �CFD� tests have been carried out.

Because of the industrial applications of these devices, most of
the experimental studies related to IJS deal with heat transfer phe-
nomena along the wall. Experimental data about mean and fluc-
tuating velocity fields are more difficult to find. Reviews of ex-
perimental fluid dynamic databases �e.g., �1,2� clearly point out
the lack of suitable experimental data and show that, for a better
understanding of the jet impingement heat transfer process, details
of the turbulent flow and thermal fields are required. A very im-
portant parameter in order to quantify this process is the heat
transfer coefficient. Experimental results of the local heat transfer

coefficient h along the wall �including values at the stagnation
point h0� can be found for a SRN jet �e.g., �3,4�, see Fig. 5� and
for a SSN jet �e.g., �5�, see Fig. 10�.

These results showed several interesting phenomena such as
higher levels of h for higher Re0, the existence of a maximum in
the variation of h0 when the nozzle-to-plate distance H is changed,
and several secondary peaks in the distribution of h along the
wall. Moreover, in order to quantify the effects of the various
parameters that influence the industrial design, numerical analysis
is very useful because of the technological and economical diffi-
culties in performing laboratory or field experiments.

Over the last years, CFD using Reynolds-averaged Navier-
Stokes �RANS� equations, coupled with some kind of turbulence
modeling, has become a standard industrial simulation tool for the
design, analysis, performance determination, or investigation of
engineering systems involving fluid flows. The spread in the use
of CFD has been driven by the availability of in-house or com-
mercial software and by the massive increase in available com-
puter speed and memory capacity, leading to the reduction of
simulation costs compared to physical prototypes and model ex-
periments. The CFD model approach that the user must choose to
obtain reliable results will depend on how much of the flow phys-
ics is wanted to recover. The CFD analysis on the basis of the
RANS equations, with a suitable turbulence model, will most
probably form the basis of most industrial engineering flow cal-
culations for the next many years. Although modeling by large
eddy simulations �LES�, or direct numerical simulations �DNS� is
becoming more affordable nowadays, it is still far from common
in industrial applications. The RANS solutions will still be used
for industrial design explorations; therefore, dealing with the un-
certainty arising from the RANS equations with EVM schemes is
a current problem. Several of these schemes have been evaluated
to gain insight into EVM schemes and their application to a com-
plex industrial flow, such as IJS for cooling metal plates. Model-
ing of IJS devices is a challenge for the actual commercial CFD
packages because many of the particular flow characteristics that
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generate strong exchanges of mass, momentum, and heat are not
easy to capture �e.g., transition flow and turbulence development,
a stagnation point flow with strong streamline curvature, wall jet
and entrainment of surrounding low velocity flow, see �2� for de-
tails�.

A revision of actual impinging jets numerical databases shows a
broad range of modeled cases, usually focused on the prediction
of heat transfer rates. The results reported by different numerical
studies, including modeling at several Reynolds numbers �Re0�,
and different nozzle-to-plate ratios �H /D for round jets, and H /B
for slot jets�, show big variations among them, and also disagree-
ment with experimental results. However, no extensive turbulence
modeling comparison was found for any of those cases. In most of
those numerical databases �some of them are cited below�, one or
two turbulence models were compared, and the near-wall treat-
ment was confined to the use of standard wall functions or damp-
ing functions. More in detail, only high and low Reynolds stan-
dard k-� models were extensively checked �e.g., see �6–10��. For
impinging jets, comparisons between a low Reynolds version of
the standard k-� with other types of EVM are scarce, but some
studies can be found; for example, the comparative studies from
Behnia et al. �11,12�. The last of the aforementioned works deals
with a comparative exercise between the Standard k-� model and
the four-equation model from Durbin �13� �V2F model�, but only
SRN jet cases were examined. A one-equation turbulence model
developed by Spalart and Allmaras �14� produces promising re-
sults in several cases of parallel flow, but applications of this
model to IJS flow have not yet been used extensively. Concerning
the second-order models �RSM�, some modeling of this kind of
flow has been made �e.g, �7,15��, and the obtained results showed
that RSM only gave slightly better results than the EVM.

It is interesting to note that the experimental results also show
that the inlet turbulence intensity level I plays an important role in
the predictions of heat exchange along the wall. However, previ-
ous works �8,14,16� point out that the majority of RANS turbu-
lence models appear to be insensitive to changes in I, although the
V2F model has given some encouraging results for SRN cases
�11,12�. More recently, a work from Shi et al. �15� showed nu-
merical results for confined SSN jet cases, but for low Reynolds
numbers �higher Re�10,000�. In the majority of the cases, the
flow is a transitional flow �17,18�. Results reported by Shi et al.
show modest changes in Nu0 when the inlet I level was changed
between 2% � I�10%. On the other hand, changes in the turbu-

lence length scale show a greater impact on Nu0.
Summarizing, all the aforementioned details reveal that the

flow in IJS is a very difficult test for EVM due to its characteris-
tics. Industrial design of three-dimensional IJS devices remains a
big challenge for the CFD tool. No clear conclusion about which
model is best can be extracted from the available numerical ex-
periments. Another difficulty is to ensure the level of uncertainty
of the CFD results, because there are only detailed experimental
databases under laboratory conditions. Experimental test cases
oriented to industrial IJS cases are more difficult to find. More
sophisticated numerical experiments, useful for EVM calibration,
are available only for a few two-dimensional test cases, e.g., SSN
cases, but at low Reynolds number �higher Re�10,000�, mod-
eled by LES �see, e.g., �19–21��. The work of Hoffman �19�, uses
Re=10,000 and H /B=20, the work from Voke and Gao �20� uses
Re=6,500 and H /B=7.22, and the work of Cieszla et al. �21�
uses 5800�Re�10,000 and 8�H /B�12. Results obtained by
these researchers reinforce the idea that, in general, the LES stud-
ies deal with cases having low Reynolds number and, sometimes,
high H /B ratios. On the other hand, no IJS cases modeled by
means of the DNS strategy were found. Therefore, computational
resources for LES or DNS for high Reynolds number are not
actually available for industrial applications �16�.

The main motivation of this work is to learn about the capabili-
ties of RANS with EVM for turbulence in the CFD computations
applied to the design of IJS cooling devices. The enlargement of
the present numerical databases, and extending the number of
turbulence models used and the test cases simulated in the afore-
mentioned references, is another interesting result, which is en-
sured because it is not easy to find extensive test cases that com-
pare the application of different turbulence models to the same IJS
case, nor test cases with numerical experiments containing exten-
sive sensitivity studies associated to parameters that strongly in-
fluence the flow behavior �e.g., H /D ratio, inlet turbulence param-
eters, or Re�.

The following sections show the procedure developed for all
the cases modeled, and the results obtained. Finally, conclusions
concerning the possibilities of EVM in industrial IJS computa-
tions are given.

2 Classification of Applied Turbulence Models
A good knowledge of the influence of turbulence is of vital

importance in heat transfer predictions for impinging jets cases. It
is of paramount importance to know which turbulence model is
the most adequate to compute mean and local values of heat trans-
fer coefficients in the design of cooling and heating jet devices.
The system of equations used is constituted by the Reynolds-
averaged continuity, momentum, and energy equations. The
Reynolds-averaging technique leads to transport equations for
mean quantities �velocity u and passive scalar c�

��

�t
+

�

�xj
�� uj� = 0 �1�

�ui

�t
+ uj

�ui

�xj
= −

1

�

�p

�xi
+

�

�

�2ui

�2xj
−

1

�

�

�xj
�� ui�uj�� + f i �2�

�c

�t
+ ui

�c

�xi
= �

�2c

�xi
2 −

�

�xi
�ui�c�� + fc �3�

The influence of the turbulence is accounted for by using turbu-
lence models that compute the averaged correlation of fluctuations
ui�uj� by means of transport equations. More details and an exten-
sive list of references with a complete description of these equa-
tions can be found in reference �2�.

The general philosophy of introducing a higher number of
transport equations for fluctuating quantities should imply a more
realistic flow description, leading to a more general model. The
research on this subject has led to the development of several

Fig. 1 Characterization of impinging jets for single round
nozzle „SRN… jet or single slot nozzle „SSN… jet
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classes of eddy viscosity turbulence models for closing the RANS
equations. Currently, this issue remains an open matter.

Often, the turbulence models are classified according to the
number of differential transport equations for turbulent quantities
that they solve. The following classification scheme was made
taking into account only the models used in this work:

• One-equation model: Spalart-Allmaras model �14�. This
model solves a differential transport equation for the turbu-
lent viscosity. The turbulent variable modeled is the effec-
tive viscosity, �ef f =�T+�.

• Two-equation models: The Standard k-� model �22� and
two variants of it �RNG k-� �23� and realizable k-� �24��.
The standard k-� model is also used �25,26�. These models
solve two differential transport equations. For the k-� family
of models, the variables modeled are the turbulent kinetic
energy k and its rate of dissipation �. For the k-� model, k
and the specific dissipation rate ��=� /k� are modeled.

• Four-equation model: V2F model �13�. This model may be
thought of as a simplification of a full second-order closure
model. It uses the v�2 component of the turbulent velocity
instead of the turbulent kinetic energy k1/2 as a velocity
scale. It has four differential equations. Two of these equa-
tions are similar to the k-� model transport equations, �k and
� equations�. A third differential transport equation is in-
cluded for the scale of the velocity component responsible
for turbulent transport v�2, and an elliptic operator �the
fourth equation� is considered to compute a term that is
analogous to the pressure-strain correlations, denoted by f .
This last equation introduces wall effects and, therefore, the
use of wall or damping functions is not necessary.

The EVM is currently the most extended �usually, the unique�
option for industrial turbulent flow modeling nowadays, but its
strategy considers an isotropic eddy viscosity. The limitations of
these eddy viscosity models stem largely from the turbulence be-
ing represented by its kinetic energy, which is a scalar, and from
the eddy viscosity assumption �27�. The former does not correctly
represent turbulence anisotropy. The latter assumes an instanta-
neous equilibrium between the Reynolds stress tensor and the
mean rate of strain. This assumption forces the alignment of the
mean axis of ui�uj� and the main rate of deformations Sij

= 1
2 ��ui /�xj +�uj /�xi�, which is correct in cases of pure stress, but

not so in flows with mean vorticity. Walls are the main source of
vorticity and turbulence, because in these regions, large gradients
of velocity �and temperature� exist and the momentum transport is
more vigorous �28�.

Anisotropy exists in all real flows. In general, EVM are de-
signed to represent shear stress anisotropy, but not normal stress
anisotropy �27� because the kinetic energy is computed assuming
that normal fluctuations are the same in all directions. To take into
account the nonisotropic nature of turbulence in near-wall regions,
a near-wall treatment is necessary. Several attempts were made to
fix these problems, among which is the V2F model from Durbin
�13,29–31�. This model tries to correct the EVM weakness by
defining the eddy viscosity with a different time scale. Addition-
ally, the wall blocking is considered in a deeper way �see more
details in Refs. �13,27,29–31��.

2.1 Near-Wall Treatment. In IJS flows, the terms corre-
sponding to shear stresses are not small, and the turbulent viscos-
ity becomes anisotropic. To take into account the nonisotropic
nature of turbulence in near-wall regions, the isotropic turbulence
models have been refined in several forms using wall functions
�WF�, damping fuctions �DF�, or a two-layer model �TLM�. The
TLM �32� replaces the inconsistent and improperly behaved �
equation in the near-wall layer, changing the length scale model
�33�; therefore, this model is more adequate than DF or WF even
though larger computational resources in terms of CPU time are

necessary due to mesh requirements �sometimes finer meshes are
necessary for a suitable convergence�. The Spalart-Allmaras
model implementation employed here uses either DF or WF, the
k-� model uses only DF, and the k-� family �and RSM� uses
either a TLM or WF. The V2F model has a more sophisticated
near-wall modeling because the wall influence is accounted for by
the model itself. The application of one of these strategies is de-
fined by analyzing the y+ values along the wall. The strategy used
depends on the y+ value obtained; therefore, it is necessary to
perform a preliminary computation to know such values. Previous
computations can be made with the Spalart-Allmaras model be-
cause the near-wall treatment changes automatically, depending
on the values computed for y+, and the suitable near-wall treat-
ment can be defined afterwards.

Applications of the above models to several IJS configurations
were performed, including a comparison of the local and mean
Nusselt numbers against experimental data, and the mean numeri-
cal Nusselt number against empirical Nusselt correlations �34�.

3 Numerical Results
The IJS flow is a complex flow for numerical modeling due to

the aforementioned characteristics. Flow and heat and mass trans-
fer show a complex behavior that is not easy to model by means
of CFD codes. Some of these characteristics, such as the particular
distribution of the heat transfer along the wall or the inlet flow
turbulence influence on the heat transfer distribution, are detailed
below. Experimental evidence �33,35� confirms that, in single im-
pinging jet systems, there is a secondary peak in the Nusselt num-
ber profile along the wall for low H /D or H /B �SRN or SSN jet
cases, respectively� ratios. Experiments for SSN jet cases �5� also
show the influence of the prescribed inlet turbulence level on the
Nusselt number at the stagnation point and on the Nusselt number
profile along the wall. This physical evidence of the link between
the Nu0, the secondary Nusselt peak, and the I levels at the wall
was numerically checked with all the aforementioned EVM mod-
els changing the nozzle-to-plate-ratio, the Reynolds number, or
the inlet intensity level.

The first step was to select the suitable experimental databases
for SRN �35� and SSN �5� jets cases to check the capabilities of
the CFD tool under clearly defined conditions �geometry, bound-
ary condition, uncertainty in the experimental measurements,
etc.�. The computations were made by simulating the IJS flow
using the various EVM strategies. Previous CFD background in
backward-facing step �BFS� flows was also accounted for, since
the flow on a BFS can be thought of as a tilted impinging jet on a
plate �2�.

3.1 Modeling Procedure Followed. Studies of the behavior
of the selected EVM were performed. The features checked were:

• Two-dimensional (2D) SRN jet cases: The accuracy of the
flow field predictions by means of comparisons between the
mean and fluctuating velocities from the CFD results and
experimental data �and with some numerical results found in
the literature�. The “grid dependence” of the numerical re-
sults. The accuracy of the prediction of the local Nusselt
number by means of comparison between the CFD simula-
tions and experimental results. The influence of the nozzle-
to-plate distance �H /D� on the Nusselt number at the stag-
nation point. The effect of the turbulent Prandtl number
�Prr� on the local Nusselt number.

• 2D SSN jet cases: The accuracy of the local Nusselt number
predictions �Nusselt number profile along the wall, Nu, by
comparing CFD simulations with different EVM and experi-
mental data, including a detailed study of sensitivity to the
inlet turbulence conditions. The influence of the nozzle-to-
plate distance �H /B� on the Nusselt number at the stagna-
tion point for two Reynolds numbers.
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For near-wall modeling in all the cases, damping functions or a
two-layer modeling scheme were applied to some of the EVM
used.

3.2 CFD Tool. Computations were carried out with a com-
mercial computer code �FLUENT® v5.4.8 and v6.1.18�. This solver
has a finite-volume solution scheme for the mean momentum,
energy, and turbulent transport equations. Incompressible flow
was assumed; thus, the use of a segregated solver is adequate. The
schemes selected to perform computations were second-order up-
wind, except for the diffusion terms, for which an implicit second-
order central differences scheme was used. The SIMPLE method
was selected to solve the pressure-velocity coupling. More details
about all the above-mentioned numerical schemes and methods
can be found in Refs. �36,37�.

3.3 Single Round Nozzle (SRN) Jet Case. The selected da-
tabase combines the results of the fluid flow from Cooper et al.
�35�, and the heat transfer measurements from Baughn et al. �3,4�.
The experimental results are integrated in a unique set of data in
the ERCOFTAC �38� database. The Cooper experiment was car-
ried out to give “fluid dynamic data” to the Baughn experiments.
Geometrical and flow parameters defined in the aforementioned
experiments were used for CFD computations, see Table 1. The
reported uncertainty in mean and root-mean-square fluctuating ve-
locities was 2% and 4–6 %, respectively, and the uncertainty in
Nusselt number was 2.4%.

The values of Re0 defined in experiments ensure that the flow is
fully turbulent �39,2�. In this case, some minor discrepancies re-
main between the Re0 used in Ref. �35,3�.

3.3.1 Numerical Test Setup. The set of turbulence models de-
scribed earlier was applied to the numerical prediction of several
cases of turbulent impinging jet from a SRN. For the k-� family
models, a TLM scheme was used to couple the near-wall zone
with the buffer layer. Table 1 shows the main characteristics of the
modeled cases, which differ in the values for Re0, H /D, and D.
Changes in Re0 and H /D show their influence on the Nusselt
number obtained �at the stagnation point Nu0, and along the wall
Nu�. The experimental results from Cooper show values for the
same Reynolds number, but for two nozzle diameters and, there-
fore, changes in the nozzle diameters D �for the same Re0� allow
one to determine the influence of inlet kinematic conditions on the
Nusselt number along the wall �small differences were reported by
Cooper�. As was expected, no noticeable differences were found.
Comparisons with the numerical databases of �7,11� were also
made.

3.3.2 Domain Definition and Computational Mesh
Characteristics. The SRN jet case was modeled, bearing in mind
that the jet is unconfined and the problem can be handled as a 2D
axisymmetric case. The outlet plane should be placed at a suffi-
ciently large radial distance from the stagnation point so that the
error arising from the application of zero-gradient or outlet-
pressure conditions will not significantly affect the region of in-

terest. Measurements were taken up to position r /D=3 and, there-
fore, a computational domain up to r /D=10 was taken for
numerical modeling. The inlet boundary was defined at two
nozzle diameters from the nozzle to prevent instabilities in the
nozzle mouth zone �see Fig. 1� For this domain, a computational
mesh and boundary conditions were defined.

3.3.3 Boundary Conditions. The inlet velocity condition was
defined by means of prescribed profiles for velocity and turbulent
quantities, depending on the turbulence model used. In order to
obtain these profiles, a separate computation was made for a de-
veloped pipe flow with the same diameter as the inlet nozzle.

At the jet axis, a symmetry condition was defined. The values
of the physical variables along the axis were determined from the
corresponding values in the adjacent cell.

At the upper and lateral boundaries, a pressure outlet boundary
condition was defined, requiring the specification of a static
�gauge� pressure. All other flow quantities were extrapolated from
the interior. The lateral outlet boundary was defined at a distance
r /D=10 from the stagnation point. At this distance, the boundary
edge is far from the zone were the secondary peak in the heat
transfer coefficient appears ��r /D=2.0�, guaranteeing that there
is no numerical influences from the boundary.

At the walls, a no-slip boundary condition was defined. Shear
stresses and heat transfer between the fluid and the wall were
computed considering the details of the local flow field. In this
case, a constant heat flux, computed according to experimental
data, was prescribed. Usually, the CFD user cannot prescribe the
shear stress values at the wall, since they are predicted internally
by the CFD code. The properties of the flows adjacent to the
wall/fluid boundary were used to compute these values, guaran-
teeing that they verify the no-slip wall conditions. An accurate
representation of the flow in the near-wall regions is important for
a successful prediction of wall-bounded turbulent flows. The near-
wall treatment depends on the mesh size near the wall, and also on
the turbulence model used. Estimations of y+ allow one to define
the adequate near-wall modeling �2,39�. The effect of the turbu-
lent Prandtl number PrT on the local Nusselt number Nu was
checked. The PrT varies with y+ as both experimental and DNS
numerical results show �40�. Experimental measuring is difficult
at low y+, but the results obtained show that the range of variation
for air and water is 1.7�PrT�0.85 for 5�y+�30. The DNS
numerical results were obtained to verify these experimental val-
ues due to the aforementioned experimental difficulties, but unfor-
tunately, the obtained values are not the same. Obtained numerical
values were around PrT=1.0 when y+�10. Kays �40� obtained a
formula that shows a reasonable representation of PrT data near
the wall, but he also points out that a value of PrT=0.85 is accept-
able. To check the influence on Nu0 and local Nusselt number
�Nu�, numerical experiments were performed by Benhia et al. �11�
for the same SRN cases as for this work. They used several con-
stant values for PrT �0.73, 0.85, and 0.92� and the Kays expression
to compute the Nu profile along the wall. Their results showed
that there is not a strong influence of PrT on Nu. They also pointed

Table 1 Cases modeled, single round nozzle „SRN jet…

Turbulence model

Case Nozzle D Re0 H /D St k-� Rlz k-� RNG k-� S-A V2F RSM
�m� �	104�

1 0.0260 2.3 2 x x x x x x
2 0.0260 7.0 2 x x x x x x
3 0.1016 2.3 2 x x x x x
4 0.1016 7.0 2 x x x x x x
5 0.1016 2.3 6 x x x x
6 0.1016 7.0 6 x x x x x x
7 0.1016 2.3 10 x x x
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out that Durbin �30� obtained similar conclusions for boundary
layer flows. On the other hand, Morris et al. �8� report some
differences for Nu using FLUENT with a constant value for PrT
�0.85� and several postprocessed results from FLUENT using ex-
pressions found in the literature for PrT, but the Reynolds numbers
modeled were lower than in the work of Behnia et al. �11�. There-
fore, some tests to check the influence of PrT on Nu were per-
formed, varying PrT between 0.7 and 1.2. No noticeable changes
in Nu were observed, in accordance with results reported by Ben-
hia et al. �11�. Then, a constant value of 0.85 for the turbulent
Prandtl number was defined for all cases.

3.3.4 Mesh Sensitivity Study. A mesh sensitivity study was
carried out to guarantee the accuracy of the numerical results,
analyzing the influence of the mesh and obtaining the adequate
computational mesh, yielding credible numerical results. The
mesh influence study was carried out by analyzing the variation of
mean velocity profiles computed for several meshes in a set of
preliminary computation cases. The meshes defined were classi-
fied in terms of their y+ values. Previous studies �2� performed in
backward-facing step flows allow one to ensure that, for boundary
layer flows and wall jet flows �25	103�Re0�75	103�, values
of y+�3 could guarantee the asymptoticity of the results. This
condition is sufficient for meshes with homogeneous cell sizes,
but it is known that for industrial problems, an important require-
ment is to define an affordable number of cells, being more criti-
cal in three-dimensional 3D problems. This means that large-size
cell gradients appear, and under this condition, the above-
mentioned rule for asymptoticity could be violated. Therefore, it is
necessary to be careful with the transition �size of the elements�
from the boundary layer toward the inside of the domain, because
oscillations can appear in the results. Bearing in mind the indus-
trial 3D design, four hybrid triangular/quadrilateral nonstructured
meshes were defined for case 1 �see Table 1�, for which a very
careful definition of the mesh from the boundary layer into the
domain was made. The y+ was computed for each mesh, and
maximum values of 3, 0.3, 0.15, and 0.04 �mesh 01–5,000, mesh
02–7,500, mesh 03–34,000, and mesh 04–64,000 cells, respec-
tively� were obtained. Comparison of velocity profiles and Nusselt
number showed that asymptoticity is reached for meshes 03 and
04 for each turbulence model used. The Spalart-Allmaras model
was more sensitive to mesh changes than the k-� models used.
Results of this analysis allow one to define suitable meshes for

other cases.

3.3.5 Numerical Results. For this case, fluid flow and thermal
field numerical results were obtained, i.e., the mean and fluctuat-
ing velocity profiles at several positions along the wall �0
�r /D ,3.0� �see Figs. 2–4�, the Nusselt number at the wall stag-
nation point �r /D=0� �see Fig. 5�, and profiles of the Nusselt
number along the wall �see Fig. 6�.

3.3.6 Profiles of Mean Velocity in the Wall Jet Zone. For all
the modeled cases shown in Table 1, profiles of mean and fluctu-
ating velocities were obtained at several positions, r /D. Figure 3
presents the nondimensional mean and fluctuating �rms� velocity
profiles for position r /D=1, case 3. The comparison of numerical
and experimental mean velocity profiles shows different quality
fittings for the turbulence models used �Fig. 3, upper left�. For the
peak value, the V2F model shows the best fitting, whereas the
worst fitting corresponds to the Standard k-�. Similar results were
obtained for other positions along the wall, from r /D=0 to r /D
=3.0 in all the test cases from Table 1. The trend of the experi-
mental wall jet velocity profiles is captured at all positions along
the wall. A more detailed analysis of these results shows that the
V2F model fits the velocity profiles better at positions where the
wall jet is developing �1
r /D
2�. The RNG k-� and realizable
k-� models also show quite good results, although worse than the
V2F model results. The Spalart-Allmaras model closely follows
the realizable k-� model.

To compare EVM and RSM performances, a modified Daly
and Harlow �41� RSM was used in cases 3 and 4 �modifications
are the slow pressure strain model from Rotta, 1970 rapid strain
term model from Fu et al., 1987 and the wall reflection model
from Launder and Shima 1981, full details of these models can be
seen in Ref. �42��. Results obtained show that the peak value of
the velocity profile is underpredicted by this model, and the model
performance is similar to that of the standard k-� model. Shi et al.
�15� reported that the Nv0 predicted by means of RSM shows
discrepancies with experiments.

Observations of the development of profiles for the mean and
fluctuating velocities, and from the wall boundary layer to the
outer layer, were made for all cases from Table 1. For the mean
velocity profile �Fig. 3 upper left�, it is observed that, in the near-
wall region �z /D�10−2� the standard k-�, the RNG k-�, the re-

Fig. 2 Left: SRN jet numerical flow pattern indicating the domain of analysis „r /D from 0 to 3, z /D¶0.5…. Right: Experimental
†35‡ mean velocity profiles at several positions along the bottom wall, in the domain described earlier „box on left…. Re0=2.3
Ã104, H /D=2.0, D=0.1016 m.
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alizable k-�, and the RSM models showed similar results, which is
to be expected because they are coupled with the same TLM
scheme.

Above the near-wall region �z /D�10−2�, the scattering of the
results begins. Near the stagnation point, the maximum value of
the profiles is best predicted by the V2F model, followed by the
RNG k-�, the Spalart-Allmaras, the realizable k-�, and the stan-
dard k-�, respectively. For profiles far from the stagnation point,
the performance of the V2F model is maintained and the Spalart-
Allmaras, RNG k-�, and realizable k-� models improve their per-
formance. The standard k-� model showed a strong underpredic-
tion of velocities at z /D=10−2, whereas for z /D�10−1, these
were overpredicted for all the profiles observed �0
r /D
3.0�,
irrespective of which Reynolds number was used. The poor per-
formance of this model was expected because it does not correctly
solve the development of the boundary layer �stagnation anomaly
�27��. This anomaly is the reason for the turbulent kinetic energy
level �k� overpredictions, leading to overpredicted values in the
outer region and underpredicted velocity values in the wall region.
Consequently, the computed wall jet is too thick, and the value of
the peak velocity is too low. Clearly, this effect is stronger for the
profiles computed closer to the stagnation point. This drawback

can be alleviated by means of a TLM scheme. Compared with
numerical databases, the two-layer scheme used here shows better
behavior than the “Yap” correction �7� or damping functions
�11,12�. On the other hand, the Spalart-Allmaras model predicts
the near-wall velocity profile very well at all positions over the
whole domain for all the cases modeled. The prediction capability
of the maximum value is similar to �or better than� the other
models, depending on the case or positions analyzed.

3.3.7 Profiles of fluctuating velocity in the wall jet zone. The
nondimensional profiles for the fluctuating velocities urms and vrms

and the shear stress u�v� are shown in Fig. 3. The k-� family
models gave similar trends to those found in the experiments, but
with a large scattering of urms and overpredictions of vrms for
z /D�10−2. It can be seen that the overprediction of k obtained
with the standard k-� model leads to high values of the fluctuating
quantities due to the stagnation point anomaly. Also, the lack of
sensitivity of these models to the effects of streamline curvature
should play an important role here. The trends are best followed
by the V2F model and, although values for urms are underpre-
dicted, the best fitting for vrms and u�v� was obtained with this
model. For urms and vrms, the Spalart-Allmaras model could not be

Fig. 3 Mean and fluctuating velocity profiles for SRN jet at position r /D=1.0, for Re0=2.3Ã104, H /D=2.0, D=0.1016 m. Upper
left, mean velocities; upper right, urms fluctuations; lower right, vrms fluctuations; lower right, ui�uj� fluctuations „average uv in
figure…. Experimental data from Cooper et al. †35‡.
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compared in a straightforward way because it does not consider k
in the computation of the fluctuating quantities, using the Bouss-
inesq assumption. Therefore, the comparison was made using the
�T definition from Spalart and Allmaras �14�. In zones closest to
the stagnation point, the k-� family models go from overpredic-
tion in the buffer layer zone to underprediction in the near-wall
zone along the profile �not shown here�. For the vrms fluctuation
component, the Spalart-Allmaras model shows a similar behavior
to the V2F model, but the latter is closer to the experimental
results. For the Reynolds shear stress u�v� and for low r /D ratios
�r /D
1.5�, the V2F model gave the best fittings, but for ratios
r /D�2.5, the best fittings were achieved with the realizable k-�.
These results are strongly dependent on the Reynolds number Re0.

Summarizing, for the fluctuating velocity components �urms and
vrms�, and the Reynolds shear stress u�v�, there is a larger scatter-
ing of numerical values obtained for low r /D ratios. When the
ratio r /D is increased, the agreement with experimental data is
improved. This is so because the coefficients in the turbulence
models used are mainly calibrated for parallel flows �e.g., see Fig.
4�.

This large scattering of the fluctuating values for the checked
models is reflected in slight differences in the predicted mean

Fig. 4 Fluctuating u�v� velocity profiles for SRN jet for several
r /D, with Re0=2.3Ã104, H /D=2.0, D=0.1016 m, „average uv in
figure…. Experimental data from Cooper et al. †35‡.

Fig. 5 Variation of the Nusselt number profile along the wall
for SRN jet case, H /D=2.0, and D=0.1016 m. Left, Re0=2.3
Ã104; right, Re0=7.0Ã104. Experimental data from Baughn and
Shimizu †3‡.
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velocity field. This analysis confirms that the k-� model produces
an excessively rapid mixing, which is to be expected from the
overprediction of fluctuating velocity levels shown in Fig. 3. Al-
though the RNG k-� and realizable k-� include corrections for the
stagnation anomaly in their formulations, disagreement between
numerical and experimental results remain. On the other hand,
they slightly improved the mean velocity predictions. The V2F
and the Spalart-Allmaras models gave the best results. Probably,
the inadequate modeling of curvature effects are responsible for
this disagreement in the corrected k-� models. Results for case 6
showed the same general behavior for all the turbulence models as
when cases with a lower H /D ratio were modeled. Similar results
for case 4 were also found. A general observation is that the EVM
strategy was more successful for lower Re0 and higher H /D ra-
tios, even though for higher Re the turbulence structure is more
isotropic. The behavior of the turbulence models will influence the
heat transfer predictions because thermal and flow boundary lay-
ers are closely related, since flow data are used as input in the heat
transfer computations. In all cases, the analogy between thermal
and flow boundary layer is assumed.

3.3.8 Nusselt Number as a Function of the Distance From
Stagnation Point �r /D�. In Fig. 5, the evolution of the Nusselt
number with r /D for the two modeled Reynolds numbers has
been represented. Experimental data show, for cases 3 and 4, a
secondary peak in the Nusselt number distribution. Concerning
the numerical results for case 3 �low Re0�, in general, a good
fitting has been obtained for all models. However, only the V2F
model reproduces the secondary peak �Fig. 5, left�, although its
value is lower and its location is not well predicted. For case 4
�high Re0�, the general trend is not as good, especially near the
stagnation point region �i.e., r /D�2, see Fig. 5, right�. In case 4,
both the V2F and the RNG k-� models reproduce the peak, al-
though the latter model yields a better prediction. The Spalart-
Allmaras model only insinuates this secondary peak, but at a
wrong position. When the nozzle-to-plate distance is increased to
H /D=6 and the higher Reynolds number is considered �case 6�,
the global agreement is still reasonable for all models, except for
the V2F model �39,2� �not shown here�. This model predicts an
anomalous peak in the place where the experimental data only
insinuate the secondary peak. Similar results were pointed out by
Ref. �11�, who remarked that the RNG k-� model does not im-
prove the standard k-� predictions. However, the cases modeled
here show good predictions at the stagnation point and along the

wall when the standard k-� model is used. Again, it is possible to
confirm that the TLM scheme improves the results compared to
damping functions or the “Yap” correction shown in the above
cited references.

3.3.9 Wall Stagnation Point Heat Transfer (at r /D=0). Simu-
lations to determine the dependence of the heat transfer coefficient
at the stagnation point �related to the Nusselt number Nu0� on the
H /D ratio have been carried out for cases 3, 5, and 6 �see Table
1�. The computed values were compared with the experimental
data from Ref. �3,4�, grouped together in the ERCOFTAC data-
base. Cases 3 and 5 are shown in Fig. 5. All models gave a
reasonable prediction of Nu0 values at the stagnation point for
Re0=2.3	103 �Fig. 5, left�. For Re0=7.0	103, there is a larger
spreading in the numerical results �Fig. 5, right�. In both cases, the
Spalart-Allmaras and RNG k-� models predict similar lower Nu0
values, while the V2F model gives a better fitting. For the stan-
dard k-� model, there is an improvement in the prediction com-
pared to results presented in Ref. �7,11�. These improvements in
Nu0 prediction may be related to a better performance of the TLM
scheme used here, compared to the damping functions used in the
aforementioned references for near-wall modeling.

Moreover, the experimental data show variations of Nu0 when
the H /D ratio changes, with a maximum Nu0 value in the interval
6�H /D�8, where experimental and numerical results are pre-
sented �see Fig. 6�. Three H /D ratios �2, 6, and 10� were modeled
to investigate the possibility of capturing the experimental Nu0
behavior when the H /D ratio is changed. This behavior might be
attributed to the increase of turbulent kinetic energy k, related to
the heat transfer phenomena, as the jet is moved away from the
impingement surface, reaching a maximum value and then start-
ing to decrease. The numerical values obtained follow the trend of
the experimental data, and a maximum value of Nu0 at H /D�6 is
predicted with the k-� and Spalart Allmaras models. The realiz-
able k-� model does not predict the maximum value in the correct
position. The trends for the V2F and RNG k-� models are not
clear because the higher H /D ratios were not modeled with these
EVM.

Regarding the Nusselt number distribution along the wall �local
Nusselt number� Nu, Fig. 5 shows its evolution with r /D. Experi-
mental data show, for cases 3 and 4, that a secondary peak in the
Nu distribution along the wall appears.

Both cases share the same nozzle diameter. Numerical results
for case 3 show that only the V2F model captures this peak, al-
though its value is lower than in the experimental data, and its
location is not well predicted. The RNG k-� model only insinuates
the peak in the same position as the experimental data �see Fig. 5,
left�. The fitting in the interval 0�r /D�1.5 is quite good for the
Spalart-Allmaras, RNG k-�, and V2F models. All models, except
the V2F model, underpredict Nu for r /D�1.5. At these distances,
the V2F model gives a slight overprediction of Nu values. For
case 4, both the V2F and RNG k-� models capture the peak, but it
is better predicted by the latter model �see Fig. 5, right�. A large
scattering of results in the interval 0�r /D�1.5 for all models
can also be observed. The Spalart-Allmaras, standard, and realiz-
able k-� models overpredict Nu in this interval. The predictions
improve in the wall jet zone �r /D�1.5� for all models except the
V2F model. When the H /D ratio is increased �case 6�, the overall
agreement is still reasonable for all the models used �not shown
here�, except for the V2F model, when r /D�1.5. The V2F model
predicts an anomalous peak in the place where data only insinuate
the secondary peak, and there is a strong overprediction of Nu in
the interval 0�r /D�3. There is no explanation for the behavior
of this model in this situation. Numerical results from Ref. �11�
also show this spurious peak, but at slightly different position
�r /D�0.8�. Also, this reference explicitly states that there is no
explanation for this peak, and it also points out that the RNG
k-� model does not improve the standard k-� predictions. The
cases modeled here show that the RNG k-� model shows a better

Fig. 6 Variation of the Nusselt number at the stagnation point
„Nu0… with the ratio H /D for Re0=2.3Ã104. Nozzle diameter D
=0.1016 m. Experimental data from Baughn and Shimizu †3‡.
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behavior than the standard k-�.
Summarizing, for the SRN jet case, the average velocity pre-

dictions of the EVM, using either wall functions or a two-layer
modeling approach, were in close agreement with experimental
data. However, the near-wall turbulence predictions were poor for
all the models tested in this exercise, especially near the point of
jet impingement. This affected the heat transfer predictions along
the impingement plate for R /D�2.0. The EVM used performed
poorly because they assume a linear stress-strain relation and a
turbulence length scale based on thin shear layer flow; conditions
that do not exist near the impingement point of a jet. Despite the
fact that the V2F model has improvements to account for these
problems, its predictions showed only a slightly better behavior.
Also, the present work shows differences �in terms of data fitting�
between the hydrodynamic and heat transfer results found using
the V2F and k-� models, and the corresponding results from Refs.
�12,11�. Nu0 variations as a function of H /D are captured by the
Spalart-Allmaras and k-� models, but in general with underpre-
dicted values. Concerning the secondary peak, it is best captured
by the V2F model for low Re0 cases. For high Re0 cases, both the
V2F and RNG k-� models capture this peak. The Spalart-
Allmaras model does not capture it.

3.4 Single Slot Nozzle (SSN) Jet Case. The second test case
to be modeled is that of a single slot nozzle. The database used
was from Gardon and Afkirat �5,33�. The experiments aimed at
estimating the local and average heat transfer coefficients �h and

h̄� in a single, and in an array of slot jets �SSN and ASN, respec-
tively�. Temperature at the wall was measured with a 0.9 mm
diameter copper-constantan termocouple. Sensitivity of the probe
was 0.024 mV/ �W/cm2�. In the experiments, the velocity field
measurements were not performed for this case. The experimental
setup consisted of jets of air impinging on a vertical, electrically
heated plate, and it was possible to modify the nozzle-to-plate
distance, now defined as H /B. Additionally, several nozzle widths
�B� were used. This database has been used in several numerical
benchmarks, �e.g., see, �6��.

3.4.1 Numerical Test Setup. Regarding the solver, an identical
setup as for the SRN jet case was made. Several cases were mod-
eled, consisting of a 3.175 mm width nozzle �B�, with an H /B
variation from 2 to 16, and for two Reynolds numbers �Re0=1.1
	104 and Re0=2.2	104�, ensuring a fully turbulent flow �2,39�.

3.4.2 Domain Definition and Computational Mesh
Characteristics. As for the SRN jet test case, the jet is also two-
dimensional �but not axisymmetric� and unconfined. Therefore,
the lateral and the top outlet conditions were defined in the same
way as for the SRN jet test case. The lateral outlet was placed at
a distance of x /B=25 from the stagnation point. At this distance,
the boundary edge is far from the zone where the secondary peak
appears �at about x /B=7�, guaranteeing that there are no numeri-
cal boundary effects over the region in which the secondary peak

is found. A prescribed value of velocity was defined in accordance
with the Reynolds number used �computed using the slot width as
the characteristic length�. Turbulent parameters were defined by
means of a prescribed value, both for the turbulence intensity
level I and for the length scale �related to the size of the more
energetic turbulence vortex�. Concerning the symmetry boundary,
since the shear stress is zero at this boundary, it can also be inter-
preted as a “slip” wall, like the one employed in viscous flow
calculations. This condition implies a zero normal velocity, and
zero normal gradients of all variables.

3.4.3 Mesh Sensitivity Study. To define a good computational
mesh, the previous SRN modeling experience allows us to define
the same strategy for this case. Therefore, a suitable mesh was
obtained when y+ was less than 3.

3.4.4 Numerical Results. The fluid dynamic field for this case
has been computed, but emphasis has been put on modeling the
thermal field. To check the capabilities of the turbulence models
selected, two studies were made. The first one consisted of chang-
ing the H /B ratio while maintaining the turbulence inlet condi-
tions at the same level �48 tests were modeled, see Table 2�. The
second one consisted of changing the I level while maintaining
the H /B ratio, and these I changes were applied for other H /B
values �36 tests were modeled, see Table 3�. Both studies were
carried out for two Re0 values �1.1	104 and 2.2	104�, and all
the turbulence models applied in the SRN test case �except the
RSM model� were used. Therefore, concerning the Spalart-
Allmaras, RNG k-�, and V2F models, Tables 2 and 3 are
complementary.

3.4.5 Nusselt Number at the Stagnation Point �Nu0�. For the
first study �changes in H /B ratio�, Nu0 was obtained and com-
pared with experiments. Figure 7 �left� shows results for Re0
=1.1	104. It can be seen that Nu0 variations appear when H /B
changes, such as in the SRN jet test case �see Fig. 6�. There is a
maximum Nu0 value at H /B�10 �for SRN jet, the maximum
value is found between H /D=6 and H /D=8�. Figure 7 �left� also
shows that these Nu0 values were overpredicted for low H /B ra-
tios, unlike the SRN jet case �the Nu0 was underpredicted for
H /D=2�. A similar behavior was observed in cases with Re0
=2.2	104 �cases from 6 to 10, see Table 2 and Fig. 7, right�. For
Re0=1.1	104 �Fig. 7, left�, the V2F model gave acceptable re-
sults for nozzle-to-plate ratios between 6�H /B�10. The
Spalart-Allmaras gave a trend similar to the experimental results
over the same interval, but with the most underpredicted values.
Results for the smallest H /B ratio showed strong Nu0 overpredic-
tions. Only the V2F model overpredicted Nu0 at H /B=16,
whereas the other models underpredicted the values. For Re0
=2.2	104 �Fig. 7, right�, similar trends appeared, but the RNG
k-� model gave the best trend in the 6�H /B�16 range. Again,
the V2F model overpredicted Nu0 at H /B=16, but the realizable
k-� also overpredicted Nu0.

Table 2 Cases modeled, single slot nozzle „SSN jet…

Turbulence model �inlet I1=2.5%�

Case Nozzle B Re0 H /B St k-� Rlz k-� RNG k-� S-A V2F
�mm� �	104�

1 3.125 1.1 2 x x x x x
2 3.125 1.1 6 x x x x x
3 3.125 1.1 8 x x x x x
4 3.125 1.1 10 x x x x x
5 3.125 1.1 16 x x x x
6 3.125 2.2 2 x x x x x
7 3.125 2.2 6 x x x x x
8 3.125 2.2 8 x x x x x
9 3.125 2.2 10 x x x x x
10 3.125 2.2 16 x x x x
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Summarizing, it can be observed that, depending on the com-
bination of H /B and Re0 selected, different models show the best
agreement with experiments, and it is not possible to define an
overall “best model” for all the modeled cases.

The goal of the second study �changes in the inlet turbulence
parameters� was to reproduce the experimental influence of these
changes on Nu0. Figure 8 shows results for Re0=2.2	104. A

similar behavior for Re0=1.1	104 was found �not shown here�.
This figure shows that the experimental behavior at the stagnation
point again was not reproduced by any tested model because the
higher Nu0 appears for H /B�2, whereas experimental data show
the maximum Nu0 at H /B�6 �see Fig. 10�. This numerical be-
havior was observed for all values of I. It is also interesting to
note that the variation of Nu0 when I is increased is only captured
by the V2F model, but only for the H /B=2 and H /B=10 cases.
For H /B=6, levels of Nu0 predicted decrease when I rises. Nu-
merical results reported by Shi et al. �15� showed variations of
Nu0 when the inlet turbulence parameters were changed. One dif-
ference between present results and the ones from Shi et al. �15�,
was the length scale defined. To check these differences, 16 more
cases were run. Each case consists of defining an I level and
changing only the length scale �from Dh to 0.07Dh� at the inlet.
The same procedure was repeated for different I values �see Table
4�. Figure 9 depicts the results obtained, showing that the trend
followed by the present standard k-� modeling agrees with the
results presented in Shi’s work when the value of 0.07Dh was used
as the length scale �i.e., Nu0 rises when the I level rises�, except
for very low I values. When the length scale value was Dh, the
results obtained show differences from those of Shi’s work. The
trends of Spalart-Allmaras are insensitive to this scale change.
Also, for each I value, Nu0 depends on the turbulence length scale
used and the EVM used. The selection of a value of 0.07Dh im-
plies the assumption that the size of the energetic vortex is very

Table 3 Cases modeled, single slot nozzle „SSN jet…: I0=0.2% , I2=6.0% I3=18.0%

Sensitivity to the inlet I level

RNG k-� S-A V2F

Case B Re0 H /B I0 I2 I3 I0 I2 I3 I0 I2 I3

�mm� �	104� �%� �%� �%�

1 3.125 1.1 2 x x x x x x x x x
2 3.125 1.1 6 x x x x x x x x x
3 3.125 1.1 10 x x x x x x x x x
4 3.125 2.2 2 x x x x x x x x x
5 3.125 2.2 6 x x x x x x x x x
6 3.125 2.2 10 x x x x x x x x x

Fig. 7 Variation of the Nusselt number at the stagnation point
„Nu0… for changes in the ratio H /B „nozzle width B=3.175 mm….
Left, Re0=1.1Ã104; right, Re0=2.2Ã104. Experimental data
from Gardon and Afkirat †5‡.

Fig. 8 Variation of the Nusselt number at the stagnation point
Nu0 with I for Re0=2.2Ã104, PrT=0.85. Nozzle width B
=3.175 mm.
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small. This could be unrealistic for jet cases, because it is com-
monly assumed that values in the range 0.1�Dh�0.5 are more
realistic in these cases �28�.

3.4.6 Nusselt Number Profiles Along the Wall. This study in-
cluded a detailed analysis of the sensitivity of Nu profile along the
wall to changes in the inlet turbulence level I. The study was
performed for three H /B ratios �2, 6, and 10� and for two Rey-

nolds numbers �Re0=1.1	104 and Re0=2.2	104�. Only the
Spalart-Allmaras, RNG k-� and V2F models were checked in this
study �54 tests, see Table 3�.

Experiments �5� show that for low H /B ratios, the Nu profile
along the wall presents a secondary peak at x /B�7. A similar
behavior was discussed for the SRN jet case, but that secondary
peak appeared at r /D�4. These experimental results also show
that the peak is strongly influenced by the inlet turbulence level I.
When the I level is increased, by adding a turbulent promoter at
the inlet, the secondary peak of the Nu profile decreases and the
Nu0 value rises. These changes in the I level contribute to a better
mixing at the stagnation point, increasing the heat exchange.

Numerical modeling was carried out to check the capability of
the turbulence models to capture this phenomenon. Three inlet I
values �I1=2.5%, I2=6.0%, and I3=18.0%� were defined for each
of the aforementioned H /B ratios �see Table 3�. Table 3, together
with Table 2 �cases for I=2.5% and for the above-mentioned tur-
bulence models�, show the complete set of modeled tests for this
sensitivity study. The secondary peak position and its maximum
value were identified and compared to experimental data �see Fig.
10�. This study started by modeling test 1 from Table 2 and test 1
from Table 3 �both cases are for H /B=2�. Comparisons between
the computed and experimental values for Nu along the wall for
the aforementioned inlet I values were made. Figure 10 shows the
results for the Spalart-Allmaras and V2F models. The RNG and
realizable k-� models gave similar results to the Spalart-Allmaras
model �not shown here�, qualitatively reproducing the experimen-
tal Nu profile trend, but only the Spalart-Allmaras model showed
some slight sensitivity in the zone where the secondary peak is.
The modeled secondary peak diminishes when the I rate rises,
reproducing the experimental behavior �see Fig. 10, left�. The re-

Fig. 10 Variation of the Nusselt number profile along the wall
for inlet turbulence intensity „I… changes, SSN jet case Re0
=1.1Ã104, H /B=2.0, B=3.75 mm. Left, Spalart-Allmaras
model; right, V2F model. Experimental data from Gardon and
Afkirat †5‡.

Table 4 Sensitivity to the length scale level changes: SSN jet, Re=11,000, H /B=2; I0=0.2% , I1=2.5 I2=6.0% , I3=18.0%; S-A,
Spalart-Allmaras; k-�, Standard k-� model

k-� S-A

Case Length scale I0 I1 I2 I3 I0 I1 I2 I3
�%� �%�

1 le1=Dh
x x x x x x x x

2 le2=0.07Dh
x x x x x x x x

Fig. 9 Variation of the Nusselt number at the stagnation point
Nu0 with the length scale for Re0=1.1Ã104, Pr=0.85. Nozzle
width B=3.175 mm. Length scale: le1=Dh , le2=0.07Dh.
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sults obtained for SSN are not similar to those obtained in the
SRN jet test cases because the secondary peak is less clearly iden-
tified for all EVM models. In the SRN cases, some EVM capture
this peak �Fig. 5�.

Only the V2F model produced changes in the Nusselt number
at the stagnation point when the inlet I was changed, but it did not
show the secondary peak from the experimental profiles �see Fig.
10, right�. From the previous results for the SRN jet case with the
V2F model, it was expected to capture this feature, but the sec-
ondary peak was not captured. Therefore, the V2F model is sen-
sitive to I variations, but only at the stagnation point, yielding
only a qualitative agreement with the experimental values for this
case. An additional characteristic of the V2F results is the pres-
ence of wiggles along the wall profile, which did not appear in the
SRN case. The mesh and boundary conditions for the mean quan-
tities were the same for all models. Similar features are found for
other H /B ratios. The residual errors for all turbulence modeling
cases were �10−4. The V2F model shows a lower convergence
ratio than the other models, sometimes reaching a level of 10−3.
Therefore, a complementary convergence analysis was carried out
in the V2F modeling case, to ensure similar convergence levels as
for other turbulence models, by checking the variation of an inte-
gral �e.g., the drag force along the wall� and a local quantity �e.g.,
the velocity at a defined point�. No oscillation in the integral and
local quantities was observed at these levels of residual conver-
gence. Another possibility was that these wiggles could be a con-
sequence of an increased sensitivity to the mesh size in the tran-
sition from the boundary layer to the inside of the domain. To
check this possibility, a test was performed with a reformulated
mesh consisting of a similar size mesh, but with a smoother tran-
sition in the cell size between the boundary layer and the outer
flow, and wiggles of less amplitude were obtained. This result
shows that the V2F model is more sensitive to the definition of the
smoothing level of the mesh.

Conclusions of the exercise for the SSN jet case are that similar
problems as for the SRN case were found. The Nu0 variations as
a function of H /B are captured by the RNG and standard k-�
models, but with underpredicted values, except for the H /B=2
ratio. At this value, Nu0 was overpredicted by all models. Con-
cerning the secondary peak, the Spalart-Allmaras model suggests
its existence, while all the k-� models fail to capture it. Unlike in
the SRN cases, the V2F model does not capture the secondary
peak. Experimental evidence �33� shows that inlet turbulence con-
ditions have a strong influence on the heat transfer at the wall.
Numerical modeling changing the inlet turbulence conditions �I
level and the turbulence length scale� showed the ability of all the
tested models to predict the variations of Nu0. All models, except
the V2F model, were insensitive when only the I level was
changed. The V2F results for Nu0 showed sensitivity, but unfor-
tunately, without a quantitative agreement. On the other hand,
changes in Dh showed some improvements in predictions of Nu0
trends for the standard k-� model �only the Spalart-Allmaras and
the standard k-� were checked, see Fig. 9�. The results obtained in
the present work show some differences with the results from Shi
et al. �15� when the I level is changed �the above-mentioned ref-
erence shows Nu0 variations�. But when the turbulence length
scale is changed, variations in Nu0 were detected, as the results
from the aforementioned reference show.

4 Conclusions
A study of the capabilities of several turbulence models to cap-

ture physical characteristics of SRN and SSN jets was conducted.
For all the cases modeled, both mean fluid dynamic and mean heat
transfer features of the impinging jet are quite well captured,
showing a reasonable agreement with the experimental databases
used. A detailed analysis of fluctuating velocities was also made
for the SRN jet case. Computations performed confirm that veloc-
ity fluctuations are not adequately predicted at the stagnation

zone, and their values are strongly dependent on the turbulence
model used. Predictions are better for zones far away from the
impingement region. The performance of all models in predicting
the Nusselt number at the stagnation point �Nu0� shows a strong
dependence on the nozzle-to-plate ratio for both the SRN and SSN
jets test cases.

In general, comparisons presented in this work show that the
checked EVM changed their performance when SRN or SSN
nozzles were modeled. Cases studied show that the behavior of all
the checked EVM was slightly better for the SRN cases. For both
the SRN and SSN jets test cases, the “relative” performance
among models varies from test to test, and it is not possible to
give a clear and general recommendation about which model is
best, in accordance with the broad discussion existing about this
subject. This work does not close the problem, but permits one to
gain some insight about it. In terms of CPU costs and accuracy,
the Spalart-Allmaras model provides an interesting performance.
The V2F needs more iterations to obtain slightly better results
than the other models checked. The mesh sensitivity study shows
that the Spalart-Allmaras model is more sensitive to mesh refine-
ment, and the V2F model shows sensitivity to the mesh smooth-
ing. The standard, realizable, and RNG k-� models gave similar
results to the Spalart-Allmaras model. The V2F model gave the
best mean velocity fittings and acceptable heat transfer results, but
only for the lower Re0 numbers selected.

In summary, with the guidelines obtained in this work, it is
possible to apply the commercial CFD tool to acquire a better
knowledge of how this type of cooling devices behave, in order to
improve its design, as was made in the second part of this work
�43�. A careful usage of commercial CFD code is mandatory when
studies concerning the variations of the nozzle-to-plate ratio are
performed. Results obtained show that, depending on the EVM
model used, the Nu0 trends are reproduced with more or less
quality. Accurate quantitative estimations of the Nu0 variation are
difficult to obtain. Concerning an appropriate modeling strategy,
the Spalart-Allmaras could be a good starting point to compute
more complex impinging jet flows because its performance is
similar to that of the k-� family models. Depending on which
EVM is used �some of them showed more sensitivity�, it will be
very important to define suitable inlet turbulence scales to obtain
realistic Nu0 trends. The use of more than one turbulence model is
highly recommended. Results reported using only one model may
be considered completely insufficient.

Nomenclature

Variables and Parameters
B � nozzle width, m
D � nozzle diameter, m
H � nozzle-to-plate distance, m
h � heat transfer coefficient, W/m2 K

h0 � heat transfer coefficient at the stagnation point,
W/m2 K

I � intensity of turbulence �relative magnitude of
the axial velocity urms� fluctuations, referred to
as the local values of the time-averaged axial

velocity, um�,
urms�
um

, N-d
k � turbulence kinetic energy, m2/s2

kf � flow thermal conductivity, W/ �m K�
LT � distance between nozzles, m
L � slot length, m

Nu0 � Nusselt number at the stagnation point based

on the nozzle’s dimension
h0D�or 2B�

kf
, N-d

Nu � local Nusselt number, hL /k, N-d
Pr � Prandtl number, Pr=�ceref

/ �kf�, N-d
Re0 � critical Reynolds number based in the nozzle’s

dimension and exit velocity,
ueD�or B�

� , N-d
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Res � critical Reynolds number based on the hydrau-
lic diameter, N-d

T � temperature, °C, K
r � round nozzle radial direction coordinate, m
x � slot width direction coordinate, m
y � slot longitudinal axis direction coordinate, m

y+ � nondimensional geometric-turbulence variable,
y+=u*y /�, N-d

z � jet axis direction coordinate, m

Greek symbols
� � rate of dissipation of kinetic energy, m2/s3

� � dynamic viscosity, kg/ �ms�
� � kinematic viscosity, m2/s

�T � eddy dynamic viscosity, kg/ �ms�
�T � eddy kinematic viscosity, m2/s
� � specific dissipation rate, �=� /k, 1 / s

Subscripts
0 � stagnation point
r � round �axisymmetrical� nozzle
s � nozzle slot

w � wall

Superscripts
ā � time average value

a� � fluctuating quantity

Acronyms
ASN � array of slot nozzles
CFD � computational fluid dynamics

EVM � eddy viscosity models
IJS � impinging jet systems

MWF � modified wall functions
RANS � Reynolds averaged navier-stokes

RNG � renormalization group theory
RSM � Reynolds stress models
SRN � single round nozzle
SSN � single slot nozzle
SWF � standard wall functions
TLM � two-layer model
V2F � eddy viscosity model from Durbin �13�
WF � wall functions
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Computational Fluid Dynamics
Modeling of Impinging Gas-Jet
Systems: II. Application to an
Industrial Cooling System Device
A numerical analysis of the flow behavior in industrial cooling systems based on arrays
of impinging jets has been performed, using several eddy viscosity models to determine
their modeling capabilities. For the cooling system studied, and in terms of mean Nusselt
number values, the best agreement between experimental results and numerical predic-
tions was obtained with the realizable k-� model. On the other hand, numerical predic-
tions of the local Nusselt number and its spatial variations along the wall are better
adjusted to the experiments when using either the standard k-� or the standard k-�
models. The results obtained also show that the predicted thermal field depends strongly
on the combination of near-wall treatment and selected turbulence
model. �DOI: 10.1115/1.1949635�

Keywords: Impinging Jets, Turbulence Model, Eddy Viscosity, Jet Array, Numerical
Modeling, Heat Transfer

1 Introduction
Heating or cooling of large surface area products is often car-

ried out in devices consisting of an array of round or slot nozzles
�ARN or ASN, respectively�, through which air or another fluid
impinges, frequently vertically, over the product’s surface �see
Fig. 1�. Occasionally, the target plate is in a translational motion.
Such impinging flow devices allow relatively high heat transfer
rates. In order to achieve a suitable device design, both from an
economic and a technical viewpoint, knowledge about the depen-
dence of the heat and mass transfer rates on the external variables
is required. Both the gas flow rate and the geometry of the device
are the main variables, which can be chosen or modified to solve
a given heat or mass transfer problem. It is essential that the
effects of these important parameters are identified and under-
stood. The first part of this work �1� allows one to identify and to
know them in a first approximation, because only single jet sys-
tems were studied.

Because of the industrial applications of these devices, the ma-
jority of experimental studies related to impinging jets deals with
heat transfer phenomena. Experimental data on mean and fluctu-
ating velocity fields are more difficult to find. A review of experi-
mental fluid dynamic databases, presented in paper I �1�, clearly
points out this problem and suggests that a better understanding of
the jet impingement heat transfer process, the details of the flow,
the geometry, the mean fluid dynamics, and turbulence conditions
are necessary.

Due to the technological and economical difficulties found
when performing and comparing experiments, numerical studies
of the problem appear to be a promising method for quantifying

the effects of the various parameters that influence the industrial
design. In the last decade, numerical methods have become in-
creasingly important in the study of impinging gas-jet systems
�IJS�. However, turbulent impinging jets have complex features
that generate strong exchanges of mass, momentum, and heat,
which depend strongly on the flow regime, on the nozzle geom-
etry, and on the wall-to-jet distance. IJS flows prove to be some-
what difficult to represent with most of the existing EVM, which
were developed �and tested� more extensively for flows parallel to
a wall. EVM assume a linear stress-strain relation and a turbu-
lence length scale based on thin shear layer flow, conditions that
do not exist near the impingement point of a jet. Most of the
actual IJS numerical databases show a broad range of modeled
cases, but only for a single nozzle. The majority of these works
have used EVM, but some studies using Reynolds stress models
�RSM� or large eddy simulations �LES� can also be found. Details
of the above-mentioned single IJS jets cases were discussed in the
first part of this work. However, one of the actual engineering
interests is the prediction of the heat and mass transfer rates for
arrays of jets interacting with plates in motion �see Figs. 1 and 4�.
Numerical results for IJS corresponding to such configurations are
scarce. Works from Chen et al. �2� and Chattopadhyay et al. �3�
present numerical results obtained by modeling an array of slot
jets �infinite array� with the target plate in translational motion.
The work from Chen et al. is for laminar flow, and the code used
in this study was based on the simple algorithm and utilized the
line-by-line method and the tri-diagonal matrix algorithm. The
work from Chattopadhyay et al. is for low Reynolds numbers
�500�Re�3,000� using LES. Under the defined velocity condi-
tion defined by these Reynolds numbers, experimental evidences
show that the flow is laminar or transitional, but not fully turbu-
lent �4,5�. Industrial devices frequently have higher Reynolds
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numbers. At the moment, the application of LES or DNS to arrays
of IJS for high Reynolds numbers is not possible with existing
computational resources �6�.

The wall heat transfer is a local effect restricted to the near-wall
zone. Industrial IJS show a strong geometrical complexity, and an
accurate near-wall modeling leads to the definition of large com-
putational meshes. In addition, large computational resources are
necessary for an accurate modeling of the near-wall flow. A com-
monly used alternative to this strategy is to relax the mesh size
and to use wall functions to solve the near-wall flow, although the
introduction of wall functions implies the assumption of a more
simple flow and, therefore, a loss of accuracy in the results, al-
though it does allow the problem to become more affordable.

Summarizing, turbulent IJS provide a strikingly difficult test
flow for turbulence models due to its characteristics. There are
several detailed experimental and numerical databases, but only
for single nozzle jets. Experimental industrially oriented test cases
for arrays of jets are difficult to find. Also, numerical results for
three-dimensional cases are scarce because the mesh size for a
suitable near-wall treatment quickly becomes unaffordable in
some cases due to the increase of the mesh size. EVM could
become a useful tool for designing industrial IJS if the capabilities
of the numerical models to reproduce this kind of flow are well
known.

The main motivation of this work is to learn the behavior of
EVM when applied to the design of industrial IJS cooling devices.
The experience gained in the previous modeling of single jet cases
already presented in the first part of this work was applied to carry
out this task. Cases from experimental databases for ASN jets
from Gardon and Afkirat �7� and Buchlin et al. �8� were modeled
by means of Reynolds-averaged Navier-Stokes �RANS� strategy
using the Boussinesq assumption and several EVM. The results
obtained for single nozzle IJS in the first part of this work showed
that credible results require simulations with more than one EVM.
Also, these results showed that the Spalart-Allmaras model could
be a good starting point to model more complex cases.

Therefore, the studies for ASN cases presented here will pro-
vide some guidelines and strategies to obtain a good heat transfer
modeling. The present modeling work takes into account the op-
timization from the modeling strategy and the computational re-
sources viewpoints.

2 Classification of Applied Turbulence Models
It is very important to know which turbulence model is the

most adequate to compute mean and local values of heat transfer
coefficients in the design of cooling/heating jet devices. The re-
search directed to improve turbulence modeling has led to the
development of several types of EVM. These models are based on
transport equations for the turbulent variables �0, 1, 2, or more
differential equations�. The general philosophy assumes that the
use of a larger number of transport equations implies a more re-
alistic flow description, leading to a more general model. The
turbulence models used in this work were based on a one-equation
model from Spalart-Allmaras �9�, three variants of a k-�, a two-
equation model �i.e., a standard k-� model from Launder and
Spalding �10�; the RNG k-� from Choudhury et al. �11� and the
realizable k-� from Shi et al. �12��, the standard k-� model from
Wilcox �13,14�, and the four-equation model V2F from Durbin
�15�. The second-order models �Reynolds stress modeling, RSM�
have a much closer connection to the physical phenomena in a
turbulent flow; but for industrial CFD applications, the EVM ap-
proach is preferred over the RSM because the latter is more “ex-
pensive” in terms of CPU time and memory, and in some cases
the RSM approach is very “stiff” for solving complex flows, and
convergence problems arise. In spite of that, a comparison with a
modified Daly and Harlow �16� RSM was also made. RSM’s
modifications were the slow pressure strain model from Rotta, the
rapid strain term model from Fu et al., and the wall reflection
model from Launder and Shima. See more details of the afore-
mentioned models in Ref. �17�.

2.1 Near-Wall Treatment. Anisotropy exists in all real flows.
In general, EVM are designed to represent shear stress anisotropy,
but not normal stress anisotropy �18� because the kinetic energy is
computed assuming that normal fluctuations are the same in all
directions. To take into account the nonisotropic nature of turbu-
lence in near-wall regions, different strategies were followed, de-
pending on the test cases. More details of the near-wall modeling
strategies used will be given in the next sections.

Applications of the above models to several ASN impinging jet
configurations were performed, including a comparison of the lo-
cal and mean Nusselt numbers against experimental data, and the
mean numerical Nusselt number against empirical Nusselt corre-
lations �19�.

3 Modeling Procedure and Numerical Results
Computations were carried out with a commercial computer

code �FLUENT® v5.4.8 and v6.1.18�. This solver has a finite-
volume solution scheme for the mean momentum, energy, and
turbulent transport equations. Incompressible flow was assumed;
thus, the use of a segregated solver is adequate. The schemes
selected to perform computations were second-order upwind im-
plicit; except for the diffusion terms, where an implicit second-
order central difference scheme was used. The SIMPLE method was
selected to solve the pressure-velocity coupling. Details on all
numerical schemes and methods mentioned above can be found in
Refs. �20–23�.

For the ASN cases, a comparison of the local Nusselt number
against experimental data has been done. This study also includes
a comparison of the mean numerical Nusselt number against em-
pirical Nusselt correlations from Martin �19�. Experience gained
in previous modeling of SRN and SSN jet cases was very useful
in defining characteristic parameters of the simulations and to
check the sensitivity of the results to changes in the mesh or
boundary conditions. For SRN cases, databases from Cooper et al.

Fig. 1 Industrial impinging gas jet system for steel plate
cooling
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�24� and Baughn et al. �25,26�, both integrated in a unique set of
data in the ERCOFTAC database �27�, were used. For SSN cases,
the databases used were from Gardon and Afkirat �7,28�. More
details and results of these previous SRN and SSN jet cases mod-
eled can be seen in the first part of this work.

3.1 Experimental Test Setups. The present work deals with
ASN jet systems. The databases used were from Gardon and
Afkirat �7� and Buchlin et al. �8�.

Gardon and Afkirat’s experiment has only results of the heat
transfer coefficient along the wall. The experimental test cases
consist of two ASN jets setups, containing two and three slot jets,
respectively. The fluid is air, impinging on an electrically heated
plate �see Fig. 2�. The plate was made of aluminium �high thermal
conductivity� in order to suppress lateral differences of tempera-
ture within it. Its temperature level was controlled at a fixed level,
low enough for heat losses by radiation to be negligible. Steady-
state convective heat transfer was obtained between the isothermal
hot surface and the jet of cooling air from the slot nozzle. The
local heat transfer rates were measured with a heat-flow trans-
ducer mounted on the hot plate and flush with its surface, without
disturbing the isothermal characteristic of the heat transfer sur-
face. The probe consisted of a 0.9 mm dia copper-constantan ther-
mocouple, with a sensitivity of 0.024 mV/ �W/cm2�. A motor-
driven device allowed the hot plate to move. In this manner, a plot
of the local rate of heat transfer versus the position of the test area
relative to the jets could automatically be recorded. The nozzle
width used was B=3.175 mm, and provision was made for vary-
ing the nozzle-to-plate spacing �4.0�H /B�40.0�, the air flow
rate, the plate temperature �which was usually maintained 2 °C
above the ambient air temperature�, and the incoming velocity at
the jet nozzle.

The Buchlin et al. �8� experiment also presents results only for
the heat transfer coefficient along the strip in a small-scale model
�see Fig. 3�. This setup is a 2:3 scale model of an industrial IJS
�see Fig. 1�. There are no velocity field measurements.

In the industrial IJS, the strip moves with a constant velocity,
increasing the complexity of the numerical study. The exhausting
jet velocity often reaches 75 m/s, but the Mach number is 0.2
�air� and, therefore, the compressibility effects are still negligible.
The scale model also fulfills the incompressibility condition in
order to extend the laboratory correlations to the industrial situa-
tion. The scale-model facility allows the investigation of the cool-
ing rate when the jet Reynolds number Res, based on the hydrau-
lic slot diameter, S=2B=22 mm, varies between 60,000 and
100,000. The slot arrangement consists of a set of perpendicular
and sloped slot nozzles, which can be adjusted in order to inves-
tigate the effect of parameters such as the nozzle spacing LT �6
�LT /S�18�, the length of the nozzle E �5�E /S�15�, the
nozzle-to-plate distance H �3�H /S�10�, and the impingement
angle � �60 deg���90 deg; �=90 deg corresponds to a perpen-
dicular jet �see Fig. 4�. The flat plate in the scale model �the strip
in the industrial IJS device� is a constant heat-flux surface 1.7 m

long and 0.27 m wide, designed to provide a uniform heat flux.
The plate temperature field was measured with an infrared scanner
consisting of a HgCdTe detector, sensitive in the 8–12 �m wave-
length range and cooled by liquid nitrogen �8�. The geometrical
resolution obtained on the skin was less than 1 mm and the afore-
mentioned spectral sensitivity is equal to a resolution of 0.08 °C at
30 °C �see details in Ref. �29��.

Because of its geometrical configuration and boundary condi-
tions, this case can be considered as a full three-dimensional case,
but the comparison between the numerical simulations and experi-
ments are quantified along the strip centerline.

3.2 Gardon and Afkirat [7] Case. The numerical prediction
of two ASN jet cases �see Table 1, and for notation, see Fig. 2�
was made. The problem was defined as steady, and the aforemen-
tioned set of turbulence models was applied. The main goal of this
test is to check the behavior of the turbulence models already used
in cases of SRN and SSN jet cases �see the first part of this work�,
and to assess the predictions of interaction between jets. Compari-
son against the Gardon and Afkirat experimental database was

Fig. 2 Characterization and nomenclature of ASN jets for the
numerical modeling of the Gardon and Afkirat †7‡ experiment:
B, nozzle width; H, nozzle-to-plate distance; LT, distance be-
tween nozzles; and L, nozzle span

Fig. 3 VKI test setup for ASN jets. The setup consists of a 2:3
scale model of the cooling moving strip unit of Fig. 1. Tempera-
ture field was measured by means of an infrared IR scanner
„from Ref. †8‡….

Fig. 4 Characterization and nomenclature of ASN jets for the
Buchlin et al. †8‡ experiment: B, nozzle width; H, nozzle-to-plate
distance; LT, distance between nozzles; E, nozzle height; L,
nozzle span; and us, velocity of the strip

Table 1 Modeled cases, array of slot nozzle jets „ASN…; Gar-
don and Afkirat †7‡ case

Case
Pipe width

�m�
Re

��103� H /B
LT

�m� Nozzles

1 0.003175 5.5 4 0.1016 2
2 0.003175 5.5 4 0.0508 3
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made, together with a comparison of the mean values of the heat
transfer coefficient against values given by empirical and widely
used relations extracted from Martin �19�. The experimental Rey-
nolds number was Res=5500; at this Reynolds number, it is not
clear that the flow is fully turbulent �5�, so strong influences due
to the transition regime are expected. It is necessary to emphasize
that the transition problem is not well modeled by all the EVM
used here. Additionally, influences of transition cannot be com-
puted, although it is very usual to use EVM to model transitional
flow assuming the flow as fully turbulent �e.g., see Ref. �30��.
Concerning the geometry, two symmetry axes were defined, the
first one at the center of one nozzle and the other at half the
distance between jets, in both cases �see Fig. 2�. Despite that the
end effects could influence the performance of the array, careful
consideration of the problem reveals that periodic domain can be
employed �2�. To check the differences between modeling an in-
finite array of jets and the experimental cases, some comparisons
were made. The comparisons made were focused on the Nusselt
number distribution along the wall, between the two jets. Results
obtained did not show appreciable differences between the two
cases �real and infinite arrays� in agreement with Ref. �2�. The
difference between the two- and three-nozzle cases, from the nu-
merical viewpoint, is the distance between jets.

3.2.1 Domain Definition, Mesh Characteristics, and Boundary
Conditions. Conditions similar to those for SRN and SSN jet
cases were defined �see the first part of this work�. Also, the
guidelines obtained in the previous cases to define a suitable mesh
were used here. Again, mesh independence was obtained when y+

was smaller than 3.
The boundary conditions were the following: At the inlet

boundary, an inlet velocity condition was defined by means of a
prescribed mean velocity value. It was possible to do this due to
the nozzle configuration �i.e., there is a nondeveloped flow at the
nozzle�. Turbulence quantities were computed from a defined
value of the turbulence intensity at the inlet �I=2.5% �, using em-
pirical expressions that depend on the turbulence model used
�23,31,32�. At the axis boundary, a symmetry condition was de-
fined. A similar symmetry condition was also defined at the lateral
boundary, at which the two jets merge—at a distance of x /B
=LT /2 in both cases �two and three nozzles�. At the upper bound-
ary, a pressure outlet boundary condition was defined through the
specification of a static �gauge� pressure. All other flow quantities
were extrapolated from the interior. At the wall boundaries, the
no-slip boundary condition was enforced. Shear stresses and heat
transfer between the fluid and the wall were computed considering
the flow details in the local flow field. In this case, a constant heat
flow was prescribed, according to experimental data. To predict
the wall shear stress in the fluid for the enforcement of no-slip
wall conditions, the properties of the flow adjacent to the wall
were used. An accurate representation of the flow in the near-wall
regions is important for a successful prediction of wall-bounded
turbulent flows. The near-wall treatment depends on the type of
turbulence model used.

3.2.2 Near-Wall Modeling. The knowledge of y+ values along
the heated plate will allow us to define the suitable near-wall
treatment �i.e., the use of wall functions �WF�, damping functions
�DF�, or a two-layer modeling �TLM��. Therefore, it is necessary
to perform a preliminary computation to estimate this value. This
was done by means of the Spalart-Allmaras model, following the
guidelines given in the first part of this work. Its implementation
in the computational code used allows the selection of the suitable
near-wall modeling automatically because the y+ are computed
internally and the near-wall treatment is activated in accordance
with the y+ value. Values of y+ are stored in a file for inspection.
Checking the y+ values along the bottom wall allows us to decide
which near-wall treatment is more suitable for the k-� family
models.

After checking the y+ value, and depending on which EVM is
used, different near-wall strategies were defined. For the Spalart-
Allmaras and the standard k-� models, ad hoc damping functions
were used �9,13�, whereas for the k-� family models, the TLM
scheme was used �17,33�. The V2F model has a specific near-wall
treatment �see Refs. �34� and �35� for details�. A brief description
of these models can also be found in Coussirat �5,31�.

3.2.3 Convergence Criteria. The first required criteria for con-
vergence was to diminish the normalized residuals by four orders
of magnitude in all quantities, but sometimes this criteria was not
successfully fulfilled. To guarantee that the results reached a
steady state, complementary controls over the mean quantities
�such as drag coefficient or temperature at the wall� and a local
quantity �e.g., the velocity at a defined point� were performed.
This control consisted of checking that the analyzed quantity did
not change its value over 1000 iterations. Differences between
flow rates at the inlet and at the outlet were also computed to
check the fulfillment of the “global” continuity condition.

3.2.4 Obtained Results. For the Gardon and Afkirat setup, re-
sults of the flow and thermal fields were obtained. With regard to
thermal quantities, profiles of the Nusselt number along the wall
and the wall heat transfer coefficient h0 at the stagnation point
�x /B=0� were computed for the two cases �two and three
nozzles�.

3.2.5 Flow Field. The computed flow field for Re=5.5
�103 , H /B=4, and two nozzles is shown in Fig. 5. The features
of the mean flow in this region are captured by the computations,
showing the stagnation point, the shear layer, the entrainment
zones, and the zone where the jets merge. A careful comparative
study of the hydrodynamic field was not performed because ex-
perimental hydrodynamic data for this case was not available in
the Gardon and Afkirat database. A similar flow pattern was ob-
served in the three-nozzles case �not shown here�.

3.2.6 Nusselt Number Profiles Along the Wall. Results of the
Nu distribution along the wall are depicted in Fig. 6 for the two-
and three-nozzles arrays �top and bottom, respectively�. These re-
sults show a reasonable agreement between numerical and experi-
mental values. For the Spalart-Allmaras and k-� family models,
the results have similar predictions both in the two-nozzles array
and in the three-nozzles array cases. On the other hand, the stan-
dard k-� and V2F models showed strong differences; the V2F
gave unrealistic results at the beginning of the jet interaction zone
�x /B=14.0 for the two nozzles and x /B=5.0 for the three
nozzles�, whereas the standard k-� gave strongly overpredicted
values at the stagnation point in both cases. In the three-jets case,
all the models showed some oscillations at the jet interaction
zone. To check the influence of the imposed symmetry condition,
in spite of the evident physical symmetry of the problem �see Fig.
2�, a modeling of the complete domain was carried out, showing
the same oscillations �not shown here�. Therefore, the symmetry
condition does not affect the results.

More in detail, for the two-jet array case �Fig. 6, top�, the real-
izable k-� model gave a very good fitting of the Nu trend and only

Fig. 5 Streamlines obtained with the standard k−� for Re
= „5.5…Ã103, H /B=4.0, B=3.175 mm, two nozzles, Gardon and
Afkirat †7‡ case. The nozzle is at the left, and the symmetry
edge is at the right.
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failed in the Nu0 value prediction. This model underpredicted the
values in a similar way to the Spalart-Allmaras and other k-�
family models �around 10%�. The V2F model gave an accurate
Nu0 value, and the standard k-� model strongly overpredicted the
value of the Nu0 �around 18%�. At the zone where the jets meet

together �x /B=16�, the V2F model strongly overpredicted the lo-
cal Nusselt number �almost a 100% discrepancy�. Here, the other
models computed a more accurate value. For the three-jets array
�Fig. 6, bottom�, the V2F model showed good behavior, except in
the jet interaction zone, as in the two-jet array case. This model
slightly overpredicted the value of Nu0 �around 3%�. The standard
k-� model gave a good prediction of Nu0, while all the other
models underpredicted the Nu0 value �maximum underprediction
is around 10%�. The standard k-� model again overpredicted Nu0,
as in the two-jet case �around 40%�. The Nusselt number profile
along the wall was predicted in a similar way by all models,
except the standard k-� model, which overpredicted values along
the wall up to x /B=6. At the zone where the jets meet together
�x /B=8�, all the models gave similar predictions of the local Nus-
selt number value. The behavior of all the models was worse in
the zone where the jets merge, because they all presented oscilla-
tion in their predictions. The V2F model showed the worst behav-
ior in this zone.

3.2.7 Mean Nusselt Number. An integration of the area under
the experimental and numerical curves was performed to obtain

the mean Nusselt number Nu and the mean heat transfer h̄.

Table 2 gives computed values of Nu and h̄ for all the turbu-
lence models used in cases 1 �two nozzles� and 2 �three nozzles�.
A comparison of the values of Nu and h̄ against the empirical

correlations to compute Nu and h̄ from Martin �19� was also car-
ried out, assuming a constant value of kf =2.52 10−2 W/ �mK�.
Quite good predictions of these values were obtained with all the
EVM used, except the RNG k-� model �see Table 2�. Taking the
experimental value as a reference, the worst value is for the RNG
k-� model, with a 23.5% overprediction for the two-jet array case.
All the other models overpredicted by about 2.5%. For the three-
jet array, the largest discrepancy was obtained with the standard
k-� model, which gave a 23% overprediction. The realizable k
-� model and the Spalart-Allmaras model underpredicted the heat
transfer coefficient, but by 8.3% and 3.6%, respectively. Martin’s
correlation gives an overprediction of 25% for the three-jet case.

Summarizing, the computed flow field pattern for Re=5.5
�103 and H /B=4 is quite similar for both the two- and three-
nozzle arrays. The main features of the flow are captured by the
computations. The trend of the Nusselt number along the wall was
followed by all the models, but unrealistic oscillations appear near
the zone where the jets merge. Predictions of the mean heat trans-

fer coefficient h̄ are acceptable for the three-nozzle array; but
surprisingly, the RNG k-� model gave overpredictions in the two-
nozzles case, despite the good behavior shown in the previously
modeled SRN and SSN cases �see the first part of this work�. For
the three-nozzle case, the mean Nusselt number prediction given
by the RGN k-� model is better than that obtained for the two-
nozzle case. Concerning the Nu0, only the standard k-� model

Fig. 6 Variation of Nusselt number with x distance: Re= „5.5…

Ã103, H /B=4.0, B=3.175 mm, Gardon and Afkirat †7‡ case.
Top, two nozzles; bottom, three nozzles.

Table 2 Mean Nusselt Nu and heat transfer coefficient h̄ computed for the two- and the three-
jets array cases: Re0=5.5Ã103, B=3.175 mm; Gardon and Afkirat †7‡ case

Two jets Three jets

Case Nusselt, Nu
h̄

�W/ �m2 K�� Nusselt, Nu
h̄

�W/ �m2 K��

Martin correlation 38.999 148.500 55.550 211.640
Gardon and Afkirat data 39.078 148.908 44.212 168.495
Spalart-Allmaras model 41.834 159.430 42.595 162.330
Standard k-� model 40.100 152.800 48.000 182.900
RNG k-� model 48.260 183.920 44.198 168.437
Realizable k-� model 40.305 153.602 47.978 182.846
Standard k-� model 42.600 162.500 57.800 220.400
V2F model 40.270 153.471 43.874 167.205
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gave a strong overprediction of this value in both cases, probably
due to a local excess of the estimated kinetic energy. Compared
with the standard k-� model, the standard k-� model predicts a
30% higher level of k at the stagnation point. Discrepancies be-
tween experiments and numerical results are probably due to the
use in all these EVM of a linear stress-strain relation and a turbu-
lence length scale based on thin shear layer flow, conditions which
do not exist near the impingement point of a jet.

3.3 Buchlin et al. [8] Case. The background obtained in the
simulations of the previous cases is applied to the modeling of the
full three-dimensional small-scale model from Buchlin et al. �8�
experiment �see Fig. 4�. The problem was defined as a steady and
fully turbulent flow. The Spalart-Allmaras model, standard, RNG,
and realizable k-� models, and the standard k-� model, were used.
Besides checking the behavior of these turbulence models, an-
other goal of this test is to check the hardware capabilities, be-
cause the CPU and memory requirements will grow considerably.
After performing some tests, the impossibility of using a TLM
scheme in this case was confirmed due to the lack of computa-
tional resources, because of the large increase in the mesh size
�more than 600,000 cells�.

3.3.1 Domain Definition, Mesh Characteristics, and Boundary
Conditions. Several hybrid and nonstructured three-dimensional
meshes were defined. A boundary layer mesh was defined at the
bottom, where the strip is located, by means of the distance be-
tween the plate and the first node �dn�, and a certain increasing
factor ���. A test of grid independence was made by varying dn

and �, and comparing the Nusselt number distribution along the
plate. No noticeable variation was observed when the mesh had
about 250,000 cells with dn=0.1 mm and �=1.1. Some details of
the mesh, which is only suitable for the use of wall functions, can
be seen in Fig. 7.

Similar considerations, as in previous cases, were made. There-
fore, the boundary conditions are the following: inlet, symmetry,
pressure outlet, and wall �no-slip�.

At the inlet faces, an inlet velocity condition was defined by
means of a prescribed value for the mean velocity, computed from
the experimental Re. Three inlets were defined, corresponding to
the jet nozzles �one marked in blue, Fig. 7, left�. Turbulence quan-
tities were computed by means of a defined value of the turbu-
lence intensity at the inlets, as in the previous ASN cases.

Accounting for the geometry of the real device �Fig. 1� and the
model �Fig. 3�, several symmetry planes were defined �marked in
yellow in Fig. 7�. At these planes, symmetry conditions were de-
fined in the same way as in the previous two-dimensional cases.

At the lateral outlet, placed opposite the symmetry plane
�marked in red, Fig. 7�, an outlet pressure boundary condition was
defined, requiring the specification of a static �gauge� pressure. Its
value was set to zero, implying that the relative pressure was
equal to the atmospheric pressure. In this boundary, all other mean
flow quantities were extrapolated from the interior. The levels of
turbulence parameters were estimated in the same way as in the
previous ASN cases.

At the wall boundaries �top and bottom�, a no-slip boundary
condition was imposed, as in previous cases �marked in black,
Fig. 7�. Shear stresses �both walls� and heat transfer �bottom wall�
between the fluid and the wall were computed, considering the
flow details in the local flow field. The bottom wall is divided into
two parts; in one, the width of which is the same as the lateral
length of the jets �y direction, see Fig. 4�, a constant heat flow was
prescribed, according to experimental data. In the other part of the
wall, a zero heat flow was prescribed.

3.3.2 Near-Wall Modeling. The near-wall treatment depends
on the type of turbulence model used. A similar study was made
as in the previous ASN cases for the y+ variation along the wall. It
allowed us to know if the mesh was suitable for the use of wall

functions or other near-wall treatments. This computation also al-
lows us to obtain a preliminary set of results for the flow velocity
and the heat transfer fields.

The computed values of y+ vary between 2, in the impingement
zones, and maximum values of about 120 along the wall. There-
fore, in many places, the use of wall function is not suitable be-
cause y+ has low values ��20–30�. Due to this variation in the y+

values, it is not possible to use WF or a TLM scheme in all of the
domain. Use of a TLM scheme implies a refinement of the mesh,
but it is not easy because the necessary cell size reduction leads to
a large increase of the number of cells in the mesh. Many times,
the use of the refined mesh is not possible due to the lack of
computational resources. A selective refining of the mesh should
allow one to obtain a mesh that fulfills the “y+ requirements,” but
it is often not possible because many “trial-and-error cycles,” im-
plying modeling to obtain y+ values, are necessary. To use wall
functions implies the coarsening of the mesh. After performing
some tests, successful coarsening was not possible because many
zones reach values greater than the upper boundary value of y+ for
a suitable use of wall functions. Therefore, it was assumed that the
unique possibility of near-wall treatment was by means of wall
functions for the k-� model family, and zones with values of y+

=2 were “assumed” �i.e., wall functions have been applied�. Both
standard wall functions, SWF, and modified wall functions, MWF
�i.e., nonequilibrium wall function sensitized to account for mild
adverse pressure gradients�, were used in computations with the
standard, realizable, and RNG k-� models. For the Spalart-
Allmaras model and the standard k-� model, damping functions
were used.

3.3.3 Convergence Criteria. The same guidelines as for the
previous Gardon and Afkirat modeling cases were followed. In

Fig. 7 Generated three-dimensional mesh, Buchlin et al. †8‡

case
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general, to decrease the normalized residuals in all quantities by
four orders of magnitude was very hard. Therefore, the aforemen-
tioned complementary convergence controls become more
important.

3.3.4 Obtained Results. For this setup, results of flow and
thermal fields were obtained. With regard to thermal quantities,
profiles of the Nusselt number along the bottom wall were com-
puted. A comparative study of the hydrodynamic field was not
performed because experimental hydrodynamic data for this case
was not available.

3.3.5 General Flow Field View. A general view of the path-
lines obtained for this case is shown in Fig. 8. The three stagna-
tion points can easily be seen. A strong recirculation is observed
near the wall in the tilted jet zone. In the other nozzles, there is
also some recirculating flow near the wall. There is a strong de-
crease of the velocity along the wall when the flow travels toward
the lateral outlet, as the pathlines show. The interaction between
jets can also be observed, as in the previous two-dimensional
cases modeled. In the near-wall zone, the strong flow toward the
lateral outlet has an important role in the heat transfer. Here, the
flow is fully three dimensional.

The computed flow field for Re=6.0�105, H /DH=4.55, and
LT /DH=14.5 �DH�S=2B for long slots�, the stagnation zones,
and the zones where the jets meet together are also shown in Fig.
9�top�. In Fig. 9�bottom� the turbulent viscosity �T distribution
can be observed.

Concerning the mixing in the near-wall region, a similar behav-
ior as for the presented two-dimensional cases was found. Higher
values of �T indicate a strong mixing in the zone where the jets
merge.

3.3.6 Nusselt Number Profiles Along the Wall. A comparison
between the experimental data and the obtained numerical results
is presented in Fig. 10.

It can be observed that the fittings are different, depending on
the turbulence model used. The minimum Nusselt values �at
x /DH�15 and at x /DH�35� were underpredicted by all models.
A reason for this disagreement between numerical results and ex-
periments could be the aforementioned lack of accuracy due to the
intrinsic formulation of the EVM. Another possible reason for this
behavior could be that all the tested EVM turbulence models are
only suitable for flows without strong streamline curvature, but
the use of a RSM model that captures the streamline curvature in
its formulation does not improve the predictions. Therefore, it is
possible to think that streamline curvature is not an important
effect in three-dimensional cases. The strong interaction between
jets is not well predicted, and the wall functions are not suitable at
these positions �y+ is less than 20 at these places�. The realizable

k-� model showed the best agreement with the experimental data.
The values at the stagnation point for the nontilted nozzles �at
x /DH�25 and at x /DH�45� were well predicted by the standard
k-� model. The predicted positions of the maximum heat transfer
showed a slight displacement with respect to the experimental

Fig. 8 Numerical pathlines obtained with the standard k−�
model for the Buchlin et al. †8‡ case

Fig. 9 Numerical results for standard k−� model, Buchlin et
al. †8‡ case. Top, velocity vectors; bottom, �T contours

Fig. 10 Comparison between turbulence models used, Buch-
lin et al. †8‡ case
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values. The performance of this model worsens closer to the tilted
nozzle �0�x /DH�15�, and it did not predict the peak at this
position. The standard k-� and the Spalart-Allmaras models un-
derpredicted these maxima, and they also showed a little drop in
the variation of the Nusselt number near the stagnation point. It is
necessary to remark that at these positions, y+ was less than 20.
Therefore, it seems that the inadequate use of wall functions did
not significantly affect the obtained results at the stagnation point,
because the predictions at these points were better than predic-
tions at other points where y+ was greater than 20. The k-� model
follows the local trend of the Nusselt number along the wall better
than any other model, improving the behavior observed in the
previous two-dimensional array cases presented �see Fig. 6�. For
the tilted nozzle, the standard k-� showed underpredicted values
for the Nusselt number, but followed its trend; the Spalart-
Allmaras model showed a similar level of Nusselt number under-
predictions, and the realizable k-� model showed some unex-
pected drops at the stagnation points. In this zone, the results from
the latter model showed some wiggles. The RNG k-� model pre-
dictions of maximum values of the Nusselt number showed strong
drops at the positions of maximum heat transfer, implying that
very low eddy viscosity values are predicted at these positions. To
understand the near-wall behavior of this model, the near-wall
parameters were checked. The analysis of the y+ profile along the
wall obtained with all the turbulence models showed similar
drops, as in the Nusselt number profiles along the wall computed
with the RNG k-� model �not shown here�. These minimum val-
ues of y+ revealed that there are low strain deformation rates com-
puted at these positions. Only the RNG k-� model showed cou-
pling between y+, eddy viscosity 	T, and Nusselt number results,
showing this strange behavior.

Two reasons could explain this behavior. The first one may be
noticed by comparing the standard k-� and the RNG k-� models
in detail. The only difference between them is the � equation,
since the equation for the turbulent kinetic energy k is the same.
The � equation for the RNG k-� model includes a term that is a
function of the mean strain and a time scale for turbulent defor-
mation rate with respect to the mean deformations �see Ref. �31�
for more details�. This term affects the 	T computation for rapidly
strained flows, diminishing its value and, therefore, the RNG
k-� model yields a lower turbulent viscosity than the standard k
-� model. Rapidly strained three-dimensional flows could strongly
affect the 	T computations when the RNG k-� model is used.

The second reason is the possible influence of wall functions in
the predictions of the kinetic energy dissipation � in this case.
Thus, the use of wall functions could affect the RNG k-� perfor-
mance. To gain insight about this behavior, a study of the influ-
ence of wall functions was made, because the study of the influ-
ence of � variations was not possible due to the lack of
experimental flow field data. For this study, both SWF and MWF
were used in computations with the standard, realizable, and RNG
k-� models. Small differences in the results can be observed for
each model, but only the results of RNG k-� model showed the
drops, as seen in Fig. 11. The last result was expected because the
impinging jet flow is pressure driven �i.e., there are no adverse
pressure gradients along the wall�. The use of other near-wall
modeling strategies could give some insight on the lack of realis-
tic numerical predictions. The use of a TLM in this case was not
possible due to the lack of computational resources but, for this
computational mesh, the use of damping functions is possible.
This near-wall treatment is used by the Spalart-Allmaras and the
standard k-� models. The obtained results showed the same y+

behavior, but there are no realistic drops in the Nusselt number
prediction for these two last models �see Fig. 10�. Therefore, it is
possible to conclude that the use of wall functions combined with
the RNG k-� model, in this case, strongly affects the near-wall
predictions of the kinetic energy dissipation �.

3.4 Mean Nusselt Number. It is also very important to
evaluate the mean value of the Nusselt number because it is a
strategic design parameter in an impinging gas-jet system cooling
device. The importance of a good prediction of the averaged Nus-
selt number is justifiable under industrial work conditions, in
which the plate to be cooled is in motion as the arrays of jets blow
air over it. Comparison between turbulence model results for the
mean value of the Nusselt number reveals that the realizable k-�
model shows the most accurate value �23% lower� compared to
the experimental data. The Martin correlation �19�, however,
shows a 13% overprediction of this value �see Table 3�.

4 Conclusions
A complete study of the capabilities of several eddy viscosity

turbulence models implemented in a commercial code to capture
physical characteristics of flows with strong streamline curvature
was conducted. It has been proven that the compared turbulence
models do not capture the influence of the turbulence over the
mean flow with good accuracy in complex three-dimensional
cases.

The first general conclusion of this work is that, nowadays, one
of the challenges in using CFD codes is to adequately choose
between the several physical and numerical models available. The
comparisons presented in this work have proved that the basic
numerical techniques �commonly, the default options in a CFD
code� could deliver the expected performance in terms of “indus-
trial accuracy,” at least when both the computational grid and the

Fig. 11 Comparison between near-wall strategies used, Buch-
lin et al. †8‡ case

Table 3 Mean Nusselt Nu and heat transfer coefficient h̄ com-
puted for the three-dimensional array cases: Re0=6.0Ã105,
H /S=4.55, and LT /S=14.5; Buchlin et al. †8‡ case

Case Nusselt, Nu
h̄

�W/ �m2 K��

Martin correlation 246.74 465.63
Experiment from Buchlin et al. �7� 312.00 514.80
Spalart-Allmaras model 146.05 240.98
Standard k-� model, �SWF� 192.23 317.18
Standard k-� model, �MWF� 174.76 288.36
RNG k-� model, �SWF� 194.37 320.70
Realizable k-� model, �MWF� 212.02 349.83
Standard k-� model 198.87 313.29
Reynolds stress modeling RSM, �SWF� 190.90 314.99
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boundary conditions are carefully defined. The selection of the
most adequate turbulence model is crucial for the success of the
simulations and to surpass the industrial accuracy level in the
mean values computed ��10% �. In the three-dimensional case
modeled, unfortunately, this level is not reached and the impossi-
bility to define a better computational mesh could be the reason
for disagreement between numerical and experimental results.

Concerning the two-dimensional ASN test configuration, results
obtained for the local Nusselt number show a reasonable agree-
ment with experimental data. Local Nusselt number computations
also allow one to compute an average Nusselt number Nu �by

profile integration� and a mean heat transfer coefficient h̄, which
are key parameters in industrial design. Comparisons of the ob-
tained numerical mean Nusselt number against experimental cor-
relations from Martin �19� were carried out. Good agreement be-
tween numerical and experimental “mean” values of heat transfer
was found for all modeled cases. For the modeled three-jet sys-
tem, the performance of all the models improves compared to the
two-jet array case.

For three-dimensional cases, the agreement of the local Nusselt
number is not good. The turbulence models used show strong
difficulties in capturing the three-dimensional effects of turbu-
lence. In spite of that, the positions where the peaks of Nu appear
are quite well predicted by the Spalart-Allmaras, standard k-�, and
k-� models, The realizable k-� and RSM models show some dis-
agreements in the predictions for the tilted nozzle peak. The stan-
dard k-� and RSM models predict the maximum values for the
perpendicular jets very well, but their performance worsens for
the tilted jet in the three-dimensional case checked. The guidelines
obtained here allow one to apply the CFD tool to better investi-
gate the behavior of this kind of cooling device in order to im-
prove its design, but in a qualitative way. The wall functions do
not show a good behavior in the three-dimensional case when they
are coupled with the RNG k-� model. This model is more sensi-
tive to the wall condition when it is not “well posed” �i.e., using
wall functions when y+ does not remain in the interval 20�y+

�120�. Finally, for heat transfer prediction in jet systems, it is
more important to choose a suitable near-wall treatment than to
select a more sophisticated turbulence model �i.e., V2F or RSM
models�, because the results that EVM provide are of similar qual-
ity, showing that the streamline curvature could possibly not be a
very relevant phenomena in three-dimensional impinging jet
flows.

Nomenclature

Variables and Parameters
B 
 nozzle width, m
D 
 nozzle diameter, m
H 
 nozzle-to-plate distance, m
h 
 heat transfer coefficient, W/m2 K

h0 
 heat transfer coefficient at the stagnation point,
W/m2 K

I 
 intensity of turbulence �relative magnitude of
the axial velocity urms� fluctuations, referring to
the local values of the time-averaged axial ve-
locity, um�, urms� /um, N-d

k 
 turbulence kinetic energy, m2/s2

kf 
 flow thermal conductivity, W/ �m K�
LT 
 distance between nozzles, m
L 
 slot length, m

Nu0 
 Nusselt number at the stagnation point based
on the nozzle’s dimension h0D�or 2B� /kf, N-d1

Nu 
 local Nusselt number, hL /k N-d
Pr 
 Prandtl number, Pr=	ceref

/ �kf�, N-d

Re0 
 critical Reynolds number based on the nozzle’s
dimension and exit velocity, ueD�or B�� 	 ,
N-d

Res 
 critical Reynolds number based on the hydrau-
lic diameter, N-d

T 
 temperature, °C, K
r 
 round nozzle radial direction coordinate, m
x 
 slot width direction coordinate, m
y 
 longitudinal axis slot direction coordinate, m

y+ 
 nondimensional geometric-turbulence variable,
y+=u*y /	, N-d

z 
 jet axis direction coordinate, m

Greek Symbols
� 
 rate of dissipation of kinetic energy m2/s3

� 
 dynamic viscosity, kg/ �ms�
	 
 kinematic viscosity, m2/s

�T 
 eddy dynamic viscosity, kg/ �ms�
	r 
 eddy kinematic viscosity, m2/s
� 
 specific dissipation rate, �=� /k 1/s

Subscripts
0 
 stagnation point
r 
 round �axisymmetrical� nozzle
s 
 slot nozzle

w 
 wall

Superscripts
ā 
 time-averaged value

a� 
 fluctuating quantity

Acronyms
ARN 
 array of round nozzles
ASN 
 array of slot nozzles
CFD 
 computational fluid dynamics

EVM 
 eddy viscosity models
IJS 
 impinging jet systems

MWF 
 modified wall functions
RANS 
 Reynolds-averaged Navier-Stokes

RNG 
 renormalization group theory
RSM 
 Reynolds stress models
SRN 
 single round nozzle
SSN 
 single slot nozzle
SWF 
 standard wall functions
TLM 
 two layer model
V2F 
 eddy viscosity model from Durbin �15�
WF 
 wall functions
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Numerical Simulation of Vortex
Cavitation in a Three-
Dimensional Submerged
Transitional Jet
Vortex cavitation in a submerged transitional jet is studied with unsteady three-
dimensional direct numerical simulations. A locally homogeneous cavitation model that
accounts for non-linear bubble dynamics and bubble/bubble interactions within spherical
bubble clusters is employed. The velocity, vorticity, and pressure fields are compared for
both cavitating and noncavitating jets. It is found that cavitation occurs in the cores of
the primary vortical structures, distorting and breaking up the vortex ring into several
sections. The velocity and transverse vorticity in the cavitating regions are intensified due
to vapor formation, while the streamwise vorticity is weakened. An analysis of the vor-
ticity transport equation reveals the influence of cavitation on the relative importance of
the vortex stretching, baroclinic torque, and dilatation terms. Statistical analysis shows
that cavitation suppresses jet growth and decreases velocity fluctuations within the va-
porous regions of the jet. �DOI: 10.1115/1.1976742�

1 Introduction
Cavitation is a dynamic process involving the growth and col-

lapse of gas cavities in liquids. The bubbles usually form and
grow in regions of low pressure and then subsequently collapse
when they are convected to regions of high pressure. If the bubble
collapse occurs near a solid wall, asymmetries can result in the
generation of extremely high pressure jets, which can cause con-
siderable material damage or erosion. This problem is particularly
important in hydraulic applications involving fluid machinery. Ad-
ditionally, the alternating growth and collapse of bubbles associ-
ated with cavitation can result in high-frequency pressure fluctua-
tions, the generation of excessive noise, and vibration. The ability
to understand and predict cavitation flow physics is important in
fluid engineering.

It is well known that there is a strong link between cavitation
inception and turbulent flow structures �1�. Evidence for this link
exists in both wall-bounded flows, as well as free-shear flows �2�.
Billard et al. �3� presented further experimental evidence for this
effect where they used a vortex �turbulence� generator upstream of
a venturi to produce preturbulence and observed a delay in cavi-
tation inception and a reduction in noise. This behavior was at-
tributed to the generation of small-amplitude, high-frequency
pressure fluctuations affecting bubble behavior, in particular the
morphology of the cavities. In another study, Baur and Ngeter �4�
studied the three-dimensional features of cavitation structures in a
turbulent shear layer. They considered a channel flow with a rect-
angular sill mounted upstream on the bottom wall of the channel.
This produced separated flow and a turbulent shear layer down-
stream in a similar manner to the turbulence generator used by
Billard et al. �3�. The shear layer produced a region of high tur-
bulence and horseshoe-shaped cavitation tubes that they associ-
ated with the bursting process in wall-bounded channel flows.

For a given flow, the location of cavitation inception can be
specified in different ways. In wall-bounded flows, such as Bil-
lard’s studies on venturi, minimum pressure occurs at or close to a
solid surface, according to the maximum-modulus theorem. How-
ever, the most common exception to this rule is in vortex cavita-
tion, where the unsteady effects and/or viscous effects associated
with vortex shedding or turbulence cause deviation from the
maximum-modulus theorem �5�.

In vortex cavitation, often associated with separated flows,
cavitation occurs in the cores of eddies formed in the shear layer
emanating from the separation point �2�. This is due to these being
regions of minimum pressure. Hence, flow separation and transi-
tion to turbulence can have a considerable effect on cavitation.
Even without flow separation, intense pressure fluctuations due to
turbulence can influence the position of cavitation. In both cases,
the temporal pressure fluctuations dictate the cavitation process.

Gopalan et al. �6� found that the location and degree of cavita-
tion was dependent on the nature of the vortical structures pro-
duced in a submerged water jet. If the jet was deliberately tripped,
cavitation occurred in the cores of the vortex rings which formed
downstream �x /D=2� of the nozzle. If the jet was not tripped,
cavitation occurred in the cores of comparatively strong stream-
wise vortex tubes just downstream �x /D=0.55� of the nozzle. As
observed by Arndt �7�, tripping the boundary layer of the jet ap-
parently suppresses the secondary vortex cavitation. This mecha-
nism of cavitation control is very similar to the one studied by
Billard et al. �3�. Sridhar and Katz et al. �8� have also shown that
the presence of a few microscopic bubbles at very low void frac-
tion can significantly affect the vortex dynamics within a water
jet.

Recent PIV �particle imaging velocimetry� measurements in a
cavitating turbulent shear layer reported by Iyer and Ceccio �9�
did not show a significant effect of cavitation on the vortical struc-
ture of the jet but did show an increase in streamwise velocity
fluctuations and a decrease in the maximum cross-stream fluctua-
tions and Reynolds stresses due to cavitation. They speculated that
the presence of cavitation in the cores of the streamwise vortices
decreased the coupling between the streamwise and cross-stream
velocity fluctuations.

The effects of cavitation on vortex dynamics in a two-
dimensional submerged planar laminar forced jet were studied
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numerically by Xing and Frankel �10�. A locally homogeneous
cavitation model that accounts for nonlinear bubble dynamics and
bubble/bubble interactions within spherical bubble clusters was
employed �11�. The effects of varying key flow and cavitation
model parameters on flow-cavitation interactions were investi-
gated. The parameters varied included the cavitation number �ef-
fectively the vapor pressure�, the bubble number density, the
bubble-cluster radius, and the Reynolds number �limited by the
two-dimensional assumption�. The results showed cavitation oc-
curring in the cores of primary vortical structures when the local
pressure fell below the vapor pressure. Low levels of void fraction
caused significant vortex distortion, with the details depending
upon the model parameters. For higher Reynolds numbers and
small values of bubble cluster radius, cavitation inhibited vortex
pairing and resulted in vortex splitting and intensification. All of
these observations were in good qualitative agreement with previ-
ous experimental and numerical studies. The vorticity transport
equation was used to examine the mechanisms behind the effects
of cavitation on vortex structures and it was found that both
cavitation-induced dilatation and baroclinic torque terms played a
role in vorticity generation. More details can be found in the re-
cent paper by Xing and Frankel �10�. Three-dimensional simula-
tions are required to simulate more complex cavitating flows.

In the recent review article by Arndt �7�, in reference to several
of the above studies, as well as others, it is stated that, “There is
also mounting evidence that vortex cavitation is a dominant factor
in the inception process in a broad range of turbulent flows.” He
also states that, “while a vortex model for cavitation in jets does
not exist, the mechanism of inception appears to be related to the
process of vortex pairing.” Finally, he states that, “a new and
important issue is that cavitation is not only induced in vortical
structures but is also a mechanism for vorticity �turbulence� gen-
eration.” Our previous two-dimensional results �10� seem to bear
this out but more work is needed before the ramifications of this
become apparent.

The objective of the present study is to conduct unsteady three-
dimensional direct numerical simulations of a round transitional
jet and examine the effect of vapor formation due to cavitation on
the vortical structure of the jet. Our simulations predict cavitation
occurring in the core of the primary azimuthal vortical structures.
The presence of low levels of vapor suppressed jet growth and
decreased velocity fluctuations in the vicinity of and downstream
of the cavitation regions of the jet. The rest of the paper presents
the mathematical model, some details of the numerical methods, a
problem description, results, and finally some conclusions.

2 Mathematical Model
Cavitating flows feature both incompressible and compressible

flow behaviors due to the presence of pure liquid in noncavitating
region and mixed liquid and vapor in the cavitating regions. This
makes the modeling and numerical methods challenging, espe-
cially when a pure compressible formulation is applied. Kubota
�11� avoids this problem by using the homogeneous incompress-
ible formulation with variable density. This model was employed
in this study for its significant improvement in the following three
ways: nonlinear interaction between viscous flow and cavitation
bubbles, consideration of the effects of bubble nuclei on cavitation
inception and development, and ability to express unsteady char-
acteristics of vortex cavitation. However, it should also be noted
that surface tension, thermal, and viscous effects have been ne-
glected in the model and the constant bubble number density per
unit volume has restricted this model to be only valid for low void
fraction flows.

The form of the Navier-Stokes equations, the local homoge-
neous model �LHM� equation, and the definition of the fluid prop-
erties, such as mixture density and viscosity, are identical to those
applied in Kubota’s study �11� and were presented more recently
in Ref. �10�. The key equations are repeated here for complete-
ness.

The following form of the Navier-Stokes equations was consid-
ered in this study:

��

�t
+ � · ��V� = 0, �1�

���V�
�t

+ � · ��VV� = − � p + 2 � · ��S� −
2

3
� �� � · V� ,

�2�

where S is the strain-rate tensor. The density of the liquid-vapor
bubble mixture is defined as

� = �1 − f����, �3�

where �� is the liquid density �the vapor density is assumed to be
negligible compared to the liquid density� and f�, the local void
fraction, is defined as

f� = n
4

3
�R3 �4�

with 0� f��1, n is the bubble number density, and R is the
bubble radius. The mixture viscosity is evaluated using

� = �1 − f���� + f���, �5�

where �� is the liquid viscosity and �� is the vapor viscosity, and
both are assumed constant.

The bubble number density is assumed constant in both space
and time, which limits the accuracy of the model for large void
fractions by neglecting bubble coalescence and splitting. The Ray-
leigh equation governs the dynamic behavior of a single bubble in
a quiescent medium �5�. Because grid resolution in most numeri-
cal simulations is insufficient to resolve individual bubbles,
Kubota et al. modified the Rayleigh equation to account for inter-
actions between bubbles �of the same radius, R�, which may occur
at scales below the grid scale. The final equation, referred to as the
local homogeneous model �LHM� equation is given as:

�1 + 2���r�2nR�R
D2R

Dt2 + �3

2
+ 4���r�2nR��DR

Dt
�2

+ 2���r�2Dn

Dt
R2DR

Dt
=

p� − p

��

, �6�

where D /Dt is the material derivative, �r is the bubble cluster
radius �distance over which bubbles may interact with each other
in a given cluster�, and p� is the vapor pressure of the liquid for a
given temperature. Notice as the bubble cluster radius goes to
zero, the Rayleigh equation for a single bubble is recovered and
bubble-bubble interactions are no longer included in the equation.
Recently, Delale et al. �12� have revised Kubota’s model and have
addressed two important effects related to bubble/bubble interac-
tions and viscous damping. In Kubota’s original model, the bubble
cluster radius is chosen to be the grid size. In Delale et al., they
related the bubble cluster radius to the radius of the bubbles
within the cluster itself �which is assumed the same for all bubbles
within the cluster, but may grow or decay depending upon the
local pressure� as follows:

�r = �R , �7�

where �=constant�1 �if �=1 then the classical Rayleigh equa-
tion is recovered�. This model assumes that local number of
bubbles within a cluster is proportional to the local volume of a
bubble, and hence the local void fraction.

To couple the LHM equation for the bubble radius to the
Navier-Stokes equations, Kubota et al. derived a quasi-Poisson
equation for the pressure which is given below �for more details
see Ref. �11��
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�2p + 	�p� = 
��V,V,
�R

�t
,R� + ���V,V� �8�

with

	�p� = �L4n�R2 p� − p

�1 + 2���r�2nR�R�L
�9�

and


��V,V,
�R

�t
,R� = − �L4n�R�R���V,V,

�R

�t
,R� + 2� �R

�t
�2�

�10�
with

���V,V,
�R

�t
,R� =

�2R

�t2 − �p� �11�

and

�p� =
p� − p

�1 + 2���r�2nR�R�L
�12�

Maximum and minimum void fractions were specified to avoid
pure liquid and vapor states with 	=
=0 and the bubble radius
fixed. In the present implementation, a hyperbolic tangent func-
tion was used to ensure a smooth variation between these two
extreme states. All quantities and equations were nondimension-
alized by the liquid density and viscosity, the jet nozzle diameter,
D, jet inlet velocity, U0, and dynamic pressure, ��U0

2. In the re-
sults, all non-dimensional quantities will be indicated by an aster-
isk, e.g., t* , x* , u*, etc..

The numerical methods employed in this study were modified
from our previous work �10� with the main difference here being
related to how the quasi-Poisson equation for the pressure is
solved in three dimensions. The details are described in the next
section.

3 Numerical Methods
A well known difficulty in obtaining time-accurate solutions for

an incompressible flow is the lack of a time derivative term in the
continuity equation. Therefore, satisfying mass conservation is a
key issue in solving the incompressible Navier-Stokes equations
and a variety of different approaches have been pursued to address
this issue. These approaches include the pressure-correction tech-
nique based on the SIMPLE algorithm, as well as approaches
which directly solve a Poisson equation for the pressure via itera-
tive methods. Many previous studies have employed a staggered
grid where velocity and pressure nodes are not collocated. This

avoids the grid-scale �odd-even� oscillations in the pressure field
associated with pressure-velocity decoupling often encountered
when using non-staggered grids. This is a popular method, espe-
cially when combined with the SIMPLE algorithm, because of its
strongly elliptic nature which does not allow energy accumulation
at the grid-scale wave number preventing grid-scale pressure os-
cillations. However, there are difficulties in discretizing non-linear
terms on non-uniform staggered grids and the amount of program-
ming and computational cost are more than with a non-staggered
grid.

The approach taken here employs a non-staggered grid and
solves the pressure Poisson equation using a compact fourth-order
accurate scheme which tends to suppress the spatial odd-even de-
coupling of the pressure-velocity fields �13�.

3.1 Fourth-Order Pressure-Correction Approach. Through
the use of the fractional-step method formalism �first-order accu-
rate in time �14��, Dormy �13� developed a new pressure correc-
tion approach. Dormy derived this new scheme for totally incom-

Table 1 Description of the flow and cavitation parameters for
the simulation cases

Case � p� �r n Re R0

1 1.80 0.10 1.0 106 1500 1.33�10−3

2 0.60 0.70 1.0 106 1500 1.33�10−3

3 0.50 0.75 1.0 106 1500 1.33�10−3

Fig. 1 Computational domain showing boundary surfaces and
inflow plane

Fig. 2 Instantaneous isosurface of Q-criterion magnitude at
t*=22. The isolevel shown is 3.2. „a… �=1.8, „b… �=0.6, „c… �
=0.5.
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pressible flows. Here we attempt to apply Dormy’s methodology
for the quasi-Poisson equation featured in the cavitation model of
Kubota et al. �11�. Additional terms including the density and its
time derivative are associated with cavitation effects, such as
bubble growth and collapse, on the pressure field. By dropping
these terms, the governing equations revert back to the form for a
totally incompressible flow.

Consider a velocity field ��V�* which does not satisfy the con-
tinuity equation �for instance, obtained by time advancing the
Navier-Stokes equations without including the pressure gradient�.
The objective is to project this onto a divergence-free field by
subtracting the gradient of a pressure-like variable � such that

�V = ��V�* − �h� , �13�

where V is the velocity field which satisfies the continuity equa-
tion. Taking the divergence of this equation yields

�2h� = �h · ��V�*, �14�

where �2h is a second-order centered approximation of the La-
placian skipping the neighboring points. The sparse nature of this
operator leads to pressure oscillations. The remedy proposed by
Dormy is to introduce a fourth-order “compact equivalent” to the
conservative discrete pressure equation.

The original non-compact formulation of the three-dimensional
Poisson equation can be written as

�2�

�x2 +
hx

2

3

�4�

�x4 + O�hx
4� +

�2�

�y2 +
hy

2

3

�4�

�y4 + O�hy
4� +

�2�

�z2 +
hz

2

3

�4�

dz4

+ O�hz
4� = �h · ��V�* +

��

�t
. �15�

To solve this equation with fourth-order accuracy, Dormy pro-
posed two-step approach that allows fourth-order accuracy at
twice the computational cost of the second-order interpolated

Fig. 3 Instantaneous isosurface of Q-criterion magnitude at
t*=26. The isolevel shown is 3.2. „a… �=1.8, „b… �=0.6, „c… �
=0.5.

Fig. 4 Void fraction and vorticity plots at t*=22. The isolevel
shown is 3.2. „a… Contour plot showing void fraction „flood… and
out-of-plane vorticity „�=0.6…. „b… Q-criterion isosurface col-
ored by the contour of void fraction „�=0.6…. „c… Contour plot
showing void fraction „flood… and out-of-plane vorticity „�
=0.5…. „d… Q-criterion isosurface colored by the contour of void
fraction „�=0.5….
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scheme. The above equation can be approximated with four-order
accuracy using a two-step method. The first step is a second-order
approximation to the second-order truncation terms written as:

�h� = �hx
2 �4

�x4 + hy
2 �4

�y4 + hz
2 �4

�z4�	�h · ��V�* +
��

�t

 . �16�

The fourth-order central differences scheme was applied to calcu-
late the right hand side of the above equation as shown here for
some function of f

fxxxxi
=

f i−2 − 4f i−1 + 6f i − 4f i+1 + f i+2

�x2 . �17�

At the boundaries, a third-order extrapolation was used

fxxxxi
=

6f i+1 + f i−1 − 4f i+2 + f i+3 − 4f i

�x2 , �18�

fxxxxi
=

6f i−1 + f i+1 − 4f i−2 + f i−3 − 4f i

�x2 . �19�

The second step uses � as a correction term

�h� = 	�h · ��V�* +
��

�t

 −

1

4
� . �20�

Hence, the pressure was solved to fourth-order accuracy and the
computational cost is exactly twice the cost of the second-order
scheme as each of the steps requires the resolution of a seven-
point compact Laplace operator �13�. Point successive over-
relaxation was applied together with Dormy’s method to solve the

Fig. 5 Instantaneous minimum pressure within domain versus
time. „a… �=1.8, p�=0.10, „b… �=0.6, p�=0.70, „c… �=0.5, p�

=0.75

Fig. 6 Axial slices showing instantaneous contour plot of
pressure at x*=2.0 and t*=22. „a… �=1.8, „b… �=0.6, „c… �=0.5.
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three-dimensional Poisson equation. The convergence criterion se-
lected was

max���P�� � 1 . D − 5, �21�

where �P is the residual of pressure in the iterations. A stricter
criterion was tried and no significant differences between the re-
sults were observed. It was also found that if the time step was
sufficiently small, the Poisson equation converged quickly at each
time step.

3.2 Discretization Schemes. Spatial derivatives appearing on
the right hand side of the quasi-Poisson equation were discretized
with a fourth-order central difference scheme, whereas all other
spatial derivatives were discretized using a second-order central
difference scheme. Time discretization was based on a simple Eu-
ler explicit forward difference with a conservative CFL number of
0.08 enforced to adequately resolve short time scales associated
with small-scale vortical structures and bubble growth and col-
lapse. A second-order accurate scheme based on Heun’s method
was also considered to allow a larger time step. A comparison
between the Euler and Heun methods showed similar results at the
same time. For simplicity the Euler time-stepping method was
used for the simulations in this study.

4 Problem Description
Three-dimensional direct numerical simulations of a sub-

merged, round water jet exhausting into a water-filled chamber
were conducted. A rectangular box computational domain was
chosen to represent the chamber. Top hat velocity profiles were
specified at the inlet with nondimensional momentum thickness of
0.3. A small amplitude sinusoidal disturbance was added to this
base profile with the Strouhal number corresponding to the pri-
mary frequency chosen as 0.223 and the secondary frequency cho-
sen as half this value. The jet Reynolds number was based on the
nozzle diameter of the jet. The cavitation number was defined here

Fig. 7 Axial slices showing instantaneous contour plot of
pressure at x*=4.0 and t*=22. „a… �=1.8, „b… �=0.6, „c… �=0.5.

Fig. 8 Instantaneous velocity vector at stream cross-section
x*=2.0 at t*=22. The vector was subtracted by the vector of �
=1.8. „a… �=0.6, „b… �=0.5.
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in terms of dimensional quantities as �= �p�− p�� /0.5��U0
2, where

p� is the chamber pressure. The cavitation number was varied by
changing the vapor pressure. The Reynolds number was defined
as ��hU0 /�� and serves to determine the liquid viscosity. The
ratio of the vapor to liquid viscosity was 0.00912 following
Kubota et al.

A sketch of the computational domain is given in Fig. 1. The
computational domain extended from −2�y*�2 in the spanwise
direction, −2�z*�2 in the transverse direction, and 0�x*�8.9
in the streamwise direction. The domain was discretized using a
uniform Cartesian mesh with 120�100�100 points. The use of a
uniform mesh avoids problems related to transforming the quasi-
Poisson equation, involving computer memory and numerical ac-
curacy, when using a non-uniform mesh.

No-slip velocity boundary conditions were enforced on the
sides of the box, and the inflow plane except for the nozzle open-
ing. Fourth-order extrapolation was used for the pressure on the
walls and outflow boundary

pimax,j = �104pimax−1,j − 114pimax−2,j + 56pimax−3,j − 11pimax−4,j�/35.

�22�
The convective boundary condition was used for velocity at the
outflow boundary

�V

�t
+ u0

�V

�x
= 0. �23�

For all cases the Reynolds number based on the jet diameter,
inlet velocity, and liquid viscosity was fixed at 1500. The effects
of the bubble number density �fixed at 106� and bubble-cluster
radius �fixed at 1.0� have already been studied in the two-
dimensional submerged laminar jet simulations �10� and are not
studied further here. The only parameter related to the cavitation

Fig. 9 Instantaneous velocity vector at stream cross-section
x*=4.0 at t*=22. The vector was subtracted by the vector of �
=1.8. „a… �=0.6, „b… �=0.5.

Fig. 10 Axial slices showing instantaneous contour plot of
streamwise vorticity at x*=2.0 and t*=22. „a… �=1.8, „b… �=0.6,
„c… �=0.5.
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model varied here is the cavitation number � �or equivalently the
vapor pressure, p��. Three values of the cavitation number will be
used to consider jets under non-cavitating ��=1.8, p�=0.1� and
cavitating conditions ��=0.6, p�=0.7 and �=0.5, p�=0.75�. All
cases are summarized in Table 1 and were tested on IBM
RISC/6000 SP POWER3+ thin nodes with 375 MHz CPU and 4
GB memory.

The results to be presented in the next section were checked for

grid independence through comparisons of flow statistics obtained
on both the current mesh and with approximately twice the num-
ber of grid points and differences of less than 2% were observed.
Hence, the simulations presented next can be considered grid in-
dependent.

5 Results and Discussion
The effects of cavitation on the instantaneous jet vortical struc-

ture can be observed in Figs. 2 and 3, where pairs of isosurfaces
of the magnitude of Q, defined as �15�

Q =
1

2
��ij�ij − SijSij� , �24�

where �ij = �ui,j −uj,i� /2 and Sij = �ui,j +uj,i� /2 are the antisymmet-
ric and symmetric components of �u, are plotted for all three
cases.

General features of the round jet transition process, from nomi-
nally laminar conditions near the nozzle exit, through the vortex
roll-up and pairing process, formation of streamwise vortex tubes,
and eventual breakdown into small-scale structures, are shared by
all cases. Careful examination of the plots reveals distortion of the
primary vortex ring structures located at approximately x*=2 and
x*=4, with a weakening of the streamwise vortex tube structures
downstream of these locations for the �=0.6 and �=0.5 cases as
compared to the �=1.8 case. These modifications to the jet vortex
structure can be attributed to vapor formation in these regions due

Fig. 11 Axial slices showing instantaneous contour plot of
streamwise vorticity at x*=4.0 and t*=22. „a… �=1.8, „b… �=0.6,
„c… �=0.5.

Fig. 12 Isosurface showing magnitude of vortex stretching
term at t*=22. The isolevel shown is 3.7. „a… �=1.8, „b… �=0.6,
„c… �=0.5.

Journal of Fluids Engineering JULY 2005, Vol. 127 / 721

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



to cavitation inception, as evidenced by superimposing instanta-
neous void fraction and vorticity as shown in Fig. 4. The forma-
tion of vapor in the cores of the primary vortex rings is clearly
visible in Figs. 4�a� and 4�b�. Evidence of vapor formation down-
stream of the primary vortex rings, in the vicinity of streamwise
vortex tubes, can be seen in Fig. 4�c�, but not in Fig. 4�d� at the
simulation time shown.

Further evidence of cavitation inception and the unsteady
bubble dynamics that result can be seen in Fig. 5, which plots a
time history of the minimum pressure within the computational
domain. This figure clearly shows that the local fluid pressure
drops below the specified vapor pressure for the two cavitating
cases, p�=0.7 and 0.75, at several times during the time span
shown, including the times corresponding to the instantaneous
results shown previously. The high-frequency fluctuations for the
minimum pressure are only observed in the two cavitating cases—

not in the noncavitating case. This is caused by the alternative
growth and decay of bubbles inside the cavitating regions within
very short periods and is similar to observations in our previous
two-dimensional cavitating jet study �10�. Also, the periodic shed-
ding of vortex rings caused the jet to behave in an alternating
cavitating and noncavitating mode. The increase of cavitation
number delays the inception of cavitation and also reduces the
duration time for the jet to be cavitating.

In order to quantify the effect of cavitation on vortex dynamics,
instantaneous contour plots of pressure at x*=2 �Fig. 6� and x*

=4 �Fig. 7� are shown at t*=22. For the noncavitating case, the
pressure field is nearly uniform in the core of the vortex ring. In
contrast, there are several regions where the pressure has dropped
below the vapor pressure for the two cavitating cases. The forma-
tion of vapor tends to break the vortex ring into several sections in
the azimuthal direction. Evidence for local flow acceleration in the
cavitating cases can be seen by comparing instantaneous velocity
vector plots at t*=22 in Figs. 8 and 9. This local flow acceleration
can be explained by the continuity equation �Eq. �1��. When vapor
forms within the center of a vortex, the local density decreases
with respect to time. As a result, the spatial derivatives of velocity
become positive based on conservation of mass law. For the same
cavitation number, further downstream, greater acceleration can
be observed. For the same axial location, the smaller the cavita-
tion number the greater the flow acceleration. This is because a
smaller cavitation number corresponds to greater vapor pressure,
thus larger zones within the vortex will cavitate and the derivative
of fluid density with respect to time inside those zones becomes
larger.

Local distortion and intensification of vortical structures due to
vaporous cavitation can be seen in instantaneous contour plots of
streamwise vorticity in Figs. 10 and 11. The vorticity of a fluid
particle can be altered by vortex stretching, dilatation, baroclinic
torque, and viscous diffusion, according to the vorticity transport
equation in a three-dimensional, variable density flow,

D�

Dt
= �� · � �V − ��� · V� +

�� � � p

�2 +
1

Re
��2�� . �25�

The magnitude of the vortex stretching term has increased by
close to a factor of 4 due to cavitation as seen in Fig. 12. The
dilatation and baroclinic torque terms are identically zero in the
non-cavitating jet, but are nonzero in the vapor-containing regions
of the cavitating jet as seen in Fig. 13. The baroclinic torque term
is over two orders of magnitude smaller than the dilatation term,
consistent with our previous two-dimensional cavitating jet simu-
lations. However, the maximum values of dilatation and baroclinic
torque terms in the current simulation are two orders of magnitude
larger than in the two-dimensional cavitating jet simulations. The
increase of baroclinic torque terms can be explained by consider-

Fig. 13 Isosurface showing magnitude of the dilatation term in
„a… and „b… and the baroclinic torque term in „c… and „d… at t*

=22. The isolevel shown is 1.5 for the dilatation term and 0.005
for the baroclinic torque term. „a… �=0.6, „b… �=0.5, „c… �=0.6,
„d… �=0.5.

Fig. 14 Momentum thickness versus axial distance
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ing the current void fraction is �25 times larger than in the two-
dimensional simulations. This will increase the local pressure and
density gradient. The increase of the dilatation term suggests local
vorticity has been intensified by bubbles in the cavitating regions.

Instantaneous data from eight flowthrough times �defined as
x* / U0�� were averaged to obtain mean and rms velocity and Rey-
nolds stress profiles. The axial variation of the jet momentum
thickness, shown in Fig. 14, indicates that cavitation suppressed

jet growth. Radial profiles of streamwise, cross-stream, and shear
components of the Reynolds stress tensor at axial stations corre-
sponding to the main cavitation regions and just downstream of
these regions are shown in Figs. 15–17, respectively. These plots
suggest that cavitation suppressed velocity fluctuations down-
stream of the cavitation regions, consistent with the suppressed jet
growth and weaker streamwise vortices noted earlier. The sup-
pression of cross-stream and shear Reynolds stress components
due to cavitation is consistent with the recent PIV �particle imag-
ing velocimetry� measurements of Iyer and Ceccio �9� for a cavi-
tating shear layer and it is greatest for the case with the lowest
cavitation number. They observed an increase in streamwise ve-
locity fluctuations near the outer edge of the shear layer, and a
decrease near the shear layer center. The location of maximum

Fig. 15 Profiles of Reynolds stress component <u�u�> /Uc
2 at

axial stations for all cases. Solid line is �=1.8, long dashed line
is �=0.6 and short dashed line is �=0.5. „a… x*=2.0, „b… x*=4.0,
„c… x*=6.0.

Fig. 16 Profiles of Reynolds stress component <����> /Uc
2 at

axial stations for all cases. Solid line is �=1.8, long dashed line
is �=0.6 and short dashed line is �=0.5. „a… x*=2.0, „b… x*=4.0,
„c… x*=6.0.
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velocity fluctuations is not at the center of the shear layer, also
consistent with Iyer and Ceccio �9�. Further downstream the in-
fluence of cavitation on the Reynolds stresses becomes more sig-
nificant, especially for the case with the lowest cavitation number.

6 Conclusions and Future Work
Numerical simulations of low Reynolds number, transitional

submerged round jets reveal that cavitation occurs within the
cores of the primary vortex rings formed just downstream of the
nozzle exit when the local fluid pressure drops below the vapor
pressure. Cavitation tends to distort and breakup the vortex rings
and also weakens the secondary streamwise vortex tubes. Evi-
dence for local flow acceleration and intensification of spanwise
vorticity at the expense of streamwise vorticity due to cavitation is

observed. Analysis of various terms in the vorticity transport
equation reveals a decrease in the magnitude of the vortex stretch-
ing term and the presence of non-zero dilatation and baroclinic
torque terms in the main cavitation regions. Statistical analysis of
the flow field demonstrates that cavitation tends to suppress jet
growth and reduce Reynolds stresses. These effects are in quali-
tative agreement with previous experimental studies of cavitating
shear flows and bubble-flow interactions. Future efforts should
focus on extending the cavitation model to apply to larger void
fraction flows by relaxing the constant bubble number density
assumption, accounting for bubble size distributions, and consid-
ering thermal nonequilibrium effects. Finally, inclusion of a sub-
gridscale turbulence model to facilitate large eddy simulations of
cavitating flows would allow higher Reynolds number and more
complex geometries, and hence scaling effects, to be considered.
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Nomenclature
D � nozzle diameter
f� � void fraction
n � bubble number density
p � pressure

p� � chamber pressure
R � bubble radius

Re � Reynolds number
S � strain rate tensor
t � time

U0 � maximum velocity at inlet
V � velocity vector

Uc � centerline velocity
u0 � convective velocity at outlet

(x, y, z) � Cartesian coordinate system
� � molecular viscosity
� � vorticity
� � density

�r � bubble cluster radius
� � cavitation number
� � gradient operator
� � constant

Subscripts
� � liquid
� � vapor

Superscripts
* � on-dimensional quantity

References
�1� Rood, E. P., 1991, “Review—Mechanisms of Cavitation Inception,” J. Fluids

Eng., 113, pp. 163–175.
�2� Arndt, R. E. A., 1981, “Cavitation in Fluid Machinery and Hydraulic Struc-

tures,” Annu. Rev. Fluid Mech., 13, pp. 273–328.
�3� Billard, J.-Y., Galivel, P., and Fruman, D. H., 1993, “Effect of Preturbulence

on the Cavitating Bubble Inception, Noise and Morphology in A Venturi,”
ASME FED, 176, pp. 31–38.

�4� Baur, T., and Ngeter, J. K., 1998, “Measurements in the Shear-Layer Behind a
Surface-Mounted Obstacle for the Determination of Coherent Structures,”
Ninth Int. Symp. on Applications of Laser Techniques to Fluid Mechanics,
Lisbon, Portugal, pp. 1–7.

�5� Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University
Press, Oxford, Chap. 2.

�6� Gopalan, S., Katz, J., and Knio, O., 1999, “The Flow Structure in the Near
Field of Jets and Its Effects on Cavitation Inception,” J. Fluid Mech., 398, pp.
1–43.

�7� Arndt, R. E. A., 2002, “Cavitation in Vortical Flows,” Annu. Rev. Fluid Mech.,

Fig. 17 Profiles of Reynolds stress component <u���> /Uc
2 at

axial stations for all cases. Solid line is �=1.8, long dashed line
is �=0.6 and short dashed line is �=0.5. „a… x*=2.0, „b… x*=4.0,
„c… x*=6.0.

724 / Vol. 127, JULY 2005 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



34, pp. 143–175.
�8� Sridhar, G., and Katz, J., 1999, “Effect of Entrained Bubbles on the Structure

of Vortex Rings,” J. Fluid Mech., 397, pp. 171–202.
�9� Iyer, C. O., and Ceccio, S. L., 2002, “The Influence of Developed Cavitation

on the Flow of a Turbulent Shear Layer,” Phys. Fluids, 14�10�, pp. 3414–
3431.

�10� Xing, T., and Frankel, S. H., 2002, “Effect of Cavitation on Vortex Dynamics
in a Submerged Laminar Jet,” AIAA J., 40�11�, pp. 2266–2276.

�11� Kubota, A., Kato, H., and Yamaguchi, H., 1992, “A New Modeling of Cavi-
tating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Sec-

tion,” J. Fluid Mech., 240, pp. 59–96.
�12� Delale, C. F., Schnerr, G. H., and Sauer, J., 2001, “Quasi-One-Dimensional

Steady-State Cavitating Nozzle Flows,” J. Fluid Mech., 427, pp. 167–204.
�13� Dormy, E., 1999, “An Accurate Compact Treatment of Pressure for Colocated

Variables,” J. Comput. Phys., 151, pp. 676–683.
�14� Perot, J. B., 1993, “An Analysis of the Fractional Step Method,” J. Comput.

Phys., 108, pp. 51–58.
�15� Hunt, J. C. R., Wray, A. A., and Moin, P., 1988, “Eddies, Stream, and Con-

vergence Zones in Turbulent Flows,” Report CTR-S88, Center For Turbulence
Research.

Journal of Fluids Engineering JULY 2005, Vol. 127 / 725

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Olivier Coutier-Delgosha1

e-mail: olivier.coutier@lille.ensam.fr

Jean-François Devillers2

e-mail: devilJF@aol.com

Mireille Leriche
e-mail: leriche@ensta.fr

Thierry Pichon
e-mail: pichon@ensta.fr

ENSTA - UER de Mécanique Chemin de la
Hunière,

91761 Palaiseau Cedex, France

Effect of Wall Roughness on the
Dynamics of Unsteady Cavitation
The present paper is devoted to the experimental study of unsteady cavitation on the
suction side of a two-dimensional foil section positioned in a cavitation tunnel with a
small incidence angle. When the pressure is decreased in the tunnel, a sheet of cavitation
characterized by large amplitude fluctuations is obtained on the foil. The present study
focuses on the effects of the foil wall roughness on the cavity unsteady behavior. Four
different sizes d of irregularities have been tested, from the smooth surface to a 400 �m
grain size. The characteristic frequency of the flow unsteadiness is investigated by ana-
lyzing the data measured by a pressure transducer mounted flush on one vertical wall of
the test section, whereas the mean cavity length is obtained by visual measurements on
the foil side. Several types of cloud cavitation are identified in the case of the smooth
surface. The effect of roughness is a significant decrease of the cavity length and a large
increase of the oscillation frequency. It results in Strouhal numbers higher than the
classical values obtained for partial cavity fluctuations. Moreover, the cavitation cycle is
disorganized by the increase of the roughness, as it can be detected by the fast fourier
transform analysis of the pressure signal. The general effect is a reduction of the pressure
fluctuation intensity. �DOI: 10.1115/1.1949637�

1 Introduction
Rocket-engine turbopumps are generally equipped with an in-

ducer stage that operates in cavitating conditions because of the
low pressure of the fluid at the inlet of the pumps. Cavitation
mainly consists in vaporized areas on the suction side of the
blades, usually denoted sheets of cavitation �Fig. 1�. Additional
low-pressure areas, such as the tips of the blades and the gap
between the rotor and the stator, also exhibit cavitation. Two ma-
jor types of instability due to cavitation have been detected in
inducers. The first one consists in nonsymmetrical flow arrange-
ments �one little sheet of cavitation and three large ones, for ex-
ample, in the case of a four-blade inducer� that rotate with a speed
different from that of the pump, as explained, for example, by de
Bernardi et al. �1�. The second one is based on large amplitude
fluctuations of the sheets of cavitations on the blades, which result
in significant pressure fluctuations at the outlet of the inducer.
These fluctuations may deteriorate the operation of the other
stages of the turbopump, so they must be avoided or at least
controlled.

The second category of instability has been extensively inves-
tigated in cavitation tunnels by analyzing the flow around two-
dimensional foil sections �2–5� or Venturi-type sections �6–9�. In
both configurations, the sheet cavity on the foil suction side or the
Venturi throat is characterized by cyclic oscillations, whose fre-
quency mainly depends on the cavity length. According to these
previous studies, the periodic fluctuations of the cavity are driven
by a reentrant jet that regularly flows from its downstream end up
to the foil leading edge, close to the wall. This reverse flow thus
periodically cuts the cavity interface in its upstream part, which
results in the detachment of the rear part. The resulting cloud of
vapor is then convected downstream until it encounters an adverse
pressure gradient and collapses. Other mechanisms, such as the
destabilization of the cavity interface combined with the reentrant
jet, have also been proposed by Lush and Peters �7� to explain the

self-sustained oscillations. The role of shock waves due to the
collapse of the cloud of vapor is also investigated by Song and
Qin �10� on the basis of numerical simulations.

To control the self-oscillating behavior by stopping the reen-
trant jet is the basic idea that was proposed by Kawanami et al.
�2�. These authors experimented with the use of obstacles charac-
terized by a significant height �2 mm� to prevent cloud cavitation.
The objective was reached even with a little length of the obstacle
in the spanwise direction, which confirms that the flow unsteadi-
ness is mainly triggered by the reentrant jet. Similar results were
obtained by Pham et al. �3� with the same type of obstacle: a
modification of the cloud-shedding phenomenon was observed,
associated with a large reduction of the reverse flow momentum.
Recently, Stutz �11� analyzed the effects of using striated or rough
bottoms instead of a polished one in a Venturi-type section. No
noticeable influence of these parameters on the two-phase flow
structure was detected. However, the irregularities on the surface
were, in this case, much smaller than the characteristic size of the
obstacle used by Kawanami et al. �2�.

The present paper focuses on the experimental investigation of
the effects of the roughness of the foil surface on the dynamics of
the cavitating flow. Experiments are conducted in the ENSTA
cavitation tunnel where various cavitation conditions can be ob-
tained: pressure can be lowered down to 150 mbar and the flow
velocity can be increased up to 10 m/s. Although the shape of the
foil section is very simple �Fig. 2�, its sharp leading and trailing
edges and small angle of attack make it representative for the flow
over the blades of a rocket-engine turbopump inducer. This is the
main advantage of using a foil section, instead of a Venturi-type
section.

When the pressure is decreased in the cavitation tunnel, sheet
cavitation appears on the foil suction side. Its behavior is rather
steady at small incidence, with only small-scale fluctuations in its
rear part, whereas periodical self-oscillations of large amplitude
involving vapor cloud shedding are obtained when the angle of
attack is increased. Figure 3 presents side views of the flow cor-
responding to the successive steps of the cycle for an angle of
attack �=3 deg, an inlet velocity Vref=6 m/s and a cavitation
number �=1. The limit between stable and unstable configura-
tions is usually contained in the range 2–3 deg. The foil suction
side is equipped with interchangeable plates characterized by dif-
ferent roughness. This device enables one to investigate the effect
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of the roughness on the cavity dynamics in order to determine
whether irregularities of the surface modify the progression of the
reentrant jet or not.

Section 2 is devoted to the presentation of the experimental
setup and estimation of the measurement uncertainties. Results
obtained with the smooth surface are presented in Sec. 3, and Sec.
4 focuses on the effects of roughness.

2 Experimental Setup
The considered geometry is a two-dimensional foil of 150 mm

chord and 80 mm span. Its cross section is composed of a flat
upper surface and a convex lower surface of 195 mm radius, as
illustrated by Fig. 2. Experiments were performed in the ENSTA
cavitation tunnel whose test section is 150 mm height, 80 mm
width, and 640 mm length. The foil was located at midheight,
with a small angle of attack, so a cavitation sheet appears on the
upper face, when the pressure is decreased in the tunnel. Com-
pared to the Venturi configuration, studied previously by Stutz and
Reboud �8,9�, the cavitation behavior is modified by the possible
interaction between the foil pressure and suction sides.

The upper wall of the foil section is equipped with interchange-
able plates characterized by various roughnesses. Preliminary tests
have been performed with abrasive paper sized on the foil, but
cavitation systematically resulted in its destruction. In the present
case about 55% of the foil surface is covered by the plates, which
are screwed, as indicated in Fig. 4. Four plates with various

Fig. 1 „a… Geometry of a rocket-engine turbopump inducer, „b… cavitating flow

Fig. 2 Foil geometry

Fig. 3 Vapor cloud shedding on the foil suction side „Inci-
dence 3 deg,Vref=6 m/s,�=1…

Fig. 4 „a… Scheme of the adaptable foil section, and „b… view of
the foil
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roughnesses and a fifth one, perfectly smooth, are available.
Roughness is obtained by metal roasting based on the compres-
sion of microscopic brass balls close to the melting conditions.
Roughness can thus be defined in the present experiments by the
mean diameter d of the balls, like the grain size in the Nikuradse’s
sand roughness �12�. The detail of the protrusions, obtained by a
microscope with magnitude �50, can be seen in Fig. 5. Four ball
diameters are considered, namely, d=100, 200, 300, and 400 �m.
They are denoted hereafter “Roughness 100, 200, 300, 400.”
These values result from a preliminary study based on the work of
Schlichting, who indicates a condition to obtain a completely
rough regime characterized by protrusions larger than the laminar
viscous sublayer. This condition is given by a minimum Reynolds
number Re=Vref�d /�=100, where � denotes the kinematic vis-
cosity of the fluid. In the experiments Vref=6 m/s and �
=10−6 m2/s so the minimal size of the balls should be �16 �m.

Another foil composed of a single piece with a smooth upper
face is also used to check that the fixation of the plates has a
negligible influence on the behavior of the cavity. The reference
pressure Pref is measured with a JPB model TB 142 absolute
pressure sensor connected to two pressure taps located, respec-
tively, at the bottom and at the top of the test section inlet. These
two taps enable one to take into account the effect of a possible
velocity gradient in the height of the cavitation tunnel. The refer-
ence velocity Vref is derived from the mass flow rate Q and the
size of the cross section of the test section inlet. Q is controlled by
a propeller flow meter. These flow conditions are regulated with
3% and 1% precision respectively, for Pref and Vref, which leads to

a 5% uncertainty on the cavitation number �= �Pref

− Pvap� / � 1
2�Vref

2 �, where Pvap denotes the vapor pressure and � the
water density.

The unsteady behavior of cavitation is characterized by mea-
surements of the fluctuating pressure with a PCB model M106B50
piezoelectric pressure transducer whose resonant frequency is 40
kHz and sensibility is 0.07 mV/Pa. The transducer is mounted
flush on one of the vertical walls of the test section, 30 mm up-
stream the foil leading edge. The pressure data are processed by a
HP 35665 spectrum analyzer whose frequency full span and de-
fault resolution are, respectively, 102.4 kHz and 400 lines. No
filtering is applied to the pressure signal. To obtain the frequency
f of the cavity self-oscillation, Fourier transforms are performed
from 1024 sample data and then averaged over 40 tests.

The length Lcav of the sheets of cavitation is estimated visually
using signs painted on the foil surface each 5 mm. In this work,
Lcav denotes the maximum length of the leading edge cavity, i.e.,
the part that remains attached to the foil, without considering the
wake downstream. To estimate the uncertainty concerning this
measurement, another method is applied in the case of the smooth
foil surface. For each flow condition, 60 side views and top views
of the sheet cavity are recorded with a standard B&W CCD cam-
era operating at 25 fps. The mean shape and thus the mean length
Lcav of the vaporized area are obtained by averaging the gray
levels on these 60 random pictures and then applying a filter to the
resulting picture �see Fig. 6�. The results obtained by the three
methods are compared in Fig. 7 in the configuration �=6 deg for
� varying between 1.6 and 1. A reliable agreement is obtained for
small cavities, whereas the uncertainty is significantly increased
for large sheet cavities, mainly because of their large amplitude
fluctuations. On the basis of this result, the precision of the direct
measurements is finally estimated to be 8%.

The setup presented here was exploited during two sets of mea-
surements achieved with different experimental procedures:

• For set 1, the flow was investigated by successively using
the smooth foil, and three plates with, respectively, a smooth
surface, d=200 �m, and d=400 �m. A large range of cavi-
tation numbers was tested, from �=1.8 down to �=0.7. The
angle of attack was varied between 0 and 6 deg by steps of
1 deg, and the reference velocity Vref was equal to 6 m/s.

• For set 2, the cavitation number was �=1.3 and Vref
=6 m/s. Four plates have been tested �the smooth one, and
d=100, 200, and 400 �m� with an angle of attack ranging
from �=0 to 5 deg by steps of 0.25 deg.

3 Results With the Smooth Wall
In this section, the results obtained in the case of the smooth

foil section �without the setup for the interchangeable plates� are
presented. They were obtained in conditions similar to the ones
reported previously by Pham et al. �3�. However, the present ex-
periments indicate that the unsteady behavior of the cavitation
sheet is characterized by three different types of oscillations,
which depend both on the cavity length and the cavitation number
�.

Six values of the cavitation number are investigated from �
=1.8 down to �=0.7. The reference velocity Vref is kept equal to
6 m/s. For each flow condition, the angle of attack is varied from
�=0 deg up to �=0 deg by steps of 1 deg �measurement set 1�.
Sheet cavitation on the foil suction side appears for a very low
incidence usually close to 1 deg. No significant unsteadiness can
be detected on the pressure signal for angles lower than 2 deg:
only high-frequency perturbations �between 200 and 500 Hz� are
obtained. This is because of small-scale fluctuations in the rear
part of the cavity, as previously reported by De Lange et al. �13�
and Pham et al. �3�. When the angle of incidence is increased over
2 deg, large fluctuations of the cavity length are observed, while

Fig. 5 Detail of the roasted metal „microscope, magnitude 50…
„a… Mean grain size 400 �m, and „b… mean grain size 200 �m
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the spectra of the fluctuating pressure signal exhibit one or several
sharp dominant peaks. The corresponding frequencies decrease
when the cavity length is increased, i.e., when the angle of attack
is augmented. This behavior is systematically obtained for all
cavitation numbers.

We focus hereafter on the conditions that lead to a pronounced
flow unsteadiness characterized by large-scale fluctuations involv-
ing periodical vapor cloud shedding �2 deg���6 deg�. Such be-
havior is usually referred to as cloud cavitation in previous studies
�3,8,9�. Figure 8 presents the evolution of the cavity length ac-
cording to the cavitation number � and the incidence �. The val-
ues are plotted as a function of the parameter � /�, derived from
the one �� /2�� proposed by Acosta �14� in his linearized theory
of partial cavitation on flat-plate hydrofoils. Le et al. �15� have
more recently correlated the cavity length Lcav with the parameter
� /�, in the case of hydrofoils similar to the present one. This
result is confirmed by the present experiments, since the cavity
lengths measured in all flow conditions are very close to a unique
chart, which suggests that they only depend on � /�. The data
scattering may be mainly due to the 8% measurement uncertainty
on Lcav. Note also that the foil angle of attack is known with a 1%
precision and � with a 5% precision �see Sec. 2�, so the uncer-

tainty on � /� is about 6%. The chart represented by the solid line
is a polynomial approximation of the experimental points, and its
equation is

Lcav

Lref
=

A

��

�
�n �1�

with A�100 and n�2.
The dynamics of the sheet of cavitation is investigated in Fig. 9

by plotting the Strouhal number Str= f �Lcav/Vref as a function of
� /�. The frequency f is the one corresponding to the dominant
peak on the spectrum of the pressure signal. Actually, several
peaks are often obtained with different magnitudes. In such cases
only the dominant peak with the highest amplitude is considered.
The only exception concerns the very large cavities �Lcav/Lref
�75% �, since in these cases the spectra suddenly exhibit a
supplementary peak of much higher amplitude than all others.
This is due to a new type of instability in the flow; therefore, in
these configurations this peak and the dominant one of lower am-
plitude are both regarded.

Several different behaviors can be distinguished:

i. For � lower than 1.3, a single sharp dominant peak of
large magnitude is usually obtained, leading to a Strouhal
number very close to a value of 0.25, which is the most
classical one for cloud cavitation �3,8�. The Strouhal num-

Fig. 6 Estimation of the cavity length from top and side views of the cavity „�=6 deg,�=1… „a… initial pictures,
„b… postprocessing to visualize the limit of the cavity

Fig. 7 Comparison of the cavity lengths obtained „i… by direct
measurements, „ii… by postprocessing of side and top views of
the cavity

Fig. 8 Evolution of the maximum attached cavity length for
several flow conditions and angles of attack varying from 2–6
deg „measurement set 1…
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ber is almost constant in this configuration, and no influ-
ence of the cavitation number � is detected.

ii. For � higher than 1.3 �only �=1.3 and �=1.6 are repre-
sented here�, the Strouhal number progressively increases,
while the magnitude of the dominant peak decreases sig-
nificantly and the number of secondary peaks of compa-
rable amplitude increases. Visually, in this situation the
flow remains clearly unsteady, whereas the large-scale
fluctuations seem to be weaker. However, the value of the
Strouhal number is still almost constant for a given value
of � �St�0.3 for �=1.3 and St�0.45 for �=1.6�. The
diminution of the dominant peak magnitude suggests that
only a part of the cavity is affected by the vapor shedding.
This would explain the acceleration of the cavitation
cycle. Strouhal numbers based on the size of the unstable
rear part of the cavity instead of its maximum length may
result in recovering the value St=0.25.

iii. In the case of very large sheets of cavitation �mainly at
low cavitation number �	0.9 and high angle of attack
�
4 deg�, a new dominant peak of great intensity is ob-
tained in the spectra, while the standard peak correspond-
ing to St=0.25 is still present. This new peak is associated
with a lower frequency that leads to a Strouhal number
close to 0.10/0.12. It characterizes a trailing-edge instabil-
ity due to the interaction between the foil suction and pres-
sure sides. It has been shown recently by numerical simu-
lations �16� that such an interaction governs the whole
cavitation cycle by periodically imposing a low-pressure

level at the foil trailing edge. As a result, the adverse pres-
sure gradient in the rear part of the cavitation sheet is too
weak to enable the progression of the reentrant jet under
the cavity toward the leading edge. This progression,
which is responsible for the cavity break-off, is only pos-
sible when the trailing-edge interaction periodically de-
creases. So the entire cavitation cycle adopts the frequency
of the trailing-edge instability. This phenomenon is usually
intermittent when the cavity length is about 80%, which
explains that two peaks corresponding, respectively, to
St�0.25 and St�0.11 appear on the spectra, whereas it is
almost permanent when the cavity length is still increased.

The low Strouhal number reported in iii is similar to the nor-
malized frequency f �Lref /Vref�0.1 obtained theoretically by
Watanabe et al. �17� in the case of very large sheets of cavitation.
Actually, these authors distinguish the “partial cavity oscilla-
tions,” corresponding to cloud cavitation with Lcav/Lref�75%,
from “transitional cavity oscillations,” occurring for sheets of
cavitation larger than 75% of the chord and characterized by a
lower Strouhal number. These expressions will be used hereafter
in the present work to differentiate the two behaviors.

4 Effects of Roughness
Both measurement sets 1 and 2 are analyzed in this section in

order to investigate the effect of the surface roughness on the
cavity dynamics. The first step consists of checking the influence
of the irregularities due to the fixation of the plate on the foil. So
the smooth plate is first used, and the characteristics of the sheet
cavitation are compared to the results presented in the previous
section. Figure 10 shows the evolution of the cavity length ac-
cording to the parameter � /� for three values of � �0.9, 1.1, and
1.3�. The polynomial approximation obtained in the case of the
other foil is also reported in dashed line. All these results belong
to the measurement set 1. No significant discrepancy is observed,
apart from a slight general increase of the lengths, which is sys-
tematically smaller than the uncertainty on their measurement.

It is then checked in Fig. 11 that the surface roughness does not
induce any supplementary effect of the cavitation number on the
cavity length: its evolution is drawn according to � /� in the case
d=400 �m. Results corresponding to �=0.9, 1.1, and 1.3 are re-
ported. All the points almost form a single curve whose approxi-
mation is indicated in solid line, so the cavity length depends only
on � /�, as in the previous case of the smooth surface.

Figure 12 presents the evolution of the cavity length as a func-
tion of the angle of attack �, with four different plates. Although

Fig. 9 Strouhal number associated with the cavity self-
oscillation „measurement set 1…

Fig. 10 Evolution of the maximum attached cavity length on the foil equipped
with the smooth plate „measurement set 1…. The dashed line corresponds to the
approximation curve plotted previously on Fig. 8.
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the present results focus on a single value of �=0.8 �measurement
set 2�, similar conclusions have been obtained for higher values of
�. It can be observed that the size of the cavity only slightly
depends on the roughness when ��2.5 deg, i.e., when only

small-scale fluctuations affect the sheet of cavitation. However, as
soon as large amplitude oscillations start, significant discrepancies
are obtained: Lcav is much lower with roughness 200 and 400 than
with the smooth plate. The difference is about 40–50 % for
2.5 deg���4 deg. This gap is partially reduced for ��4 deg,
and it equals only 25% for �=5 deg. The case of roughness 100
gives intermediate values of Lcav. Two conclusions can be derived
from this evolution: �i� roughness affects significantly the cavity
length only in conditions of cloud cavitation and �ii� the effect of
roughness does not linearly depend on the size of the protrusions;
a noticeable modification of the cavity length is obtained by in-
creasing d from 0 to 200 �m, but it seems that increasing d over
200 �m does not lead to any substantial evolution.

When the sheet cavitation becomes longer than the plates, the
cavity continues to increase in the case of roughness 400, whereas
it almost stabilizes on the smooth plate. However, the discrepancy
between roughness 400 and 100 remains approximately constant.
Thus, these results do not indicate clearly if the end of the rough-
ness at 55% of the foil plays a major role or not.

The analysis of the Strouhal numbers obtained for �=0.9 and
1.3 �Figs. 13 and 14, respectively� shows a major effect of rough-
ness on the cavity dynamic. Note that the first flow condition was
characterized previously by a constant Strouhal number St
�0.25, whereas the second one, and higher values of �, resulted
in a progressive increase from St�0.25 up to St�0.45 for �
=1.6. Both roughnesses 200 and 400 clearly lead here to a notable
augmentation of these values: St is about 0.35–0.45 for �=0.9,

Fig. 11 Cavity lengths for roughness 400 and three values of � „measurement
set 1…

Fig. 12 Evolution of the cavity length with the incidence for
�=0.8 and three different plates of various roughnesses „mea-
surement set #2…

Fig. 13 Strouhal numbers for various roughness and �=0.9 „measurement set
1…
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and 0.55–0.75 for �=1.3. Although the data are scattered into
these ranges, this discrepancy with the previous results cannot be
attributed to the experimental uncertainties �see Figs. 13 and 14�.
It indicates that the protrusions make the shedding frequency
much increase. This result must be associated with the visual ob-
servations, which display a notable modification of the aspect of
the cavity. Its downstream end is not so clearly limited as before,
and the noise resulting from the self-oscillations seems to be sig-
nificantly weaker. This trend is confirmed by the spectra of the
fluctuating pressure signal; the sharp dominant peaks have been
replaced by dominant frequencies distributed in broad ranges of a
few tens of hertz width and characterized by much lower magni-
tudes �see Fig. 15�. As a matter of fact, these magnitudes are
divided by a factor comprised between three and five when d is
increased from 0 to 400 �m. This modification, which can be
interpreted as a reduction of both intensity and regularity of the
cavitation cycle, suggests that the shedding process is strongly
perturbed by roughness. This may be due to a premature decrease
of the reentrant jet momentum because of the additional stress
induced by the protrusions. As a result, only a small part of the
cavity is detached from the foil. Such small vapor shedding �close
to the one observed at low incidence� is usually characterized by a
high and fluctuating frequency, which explains both the high
Strouhal numbers and the modification of the pressure signal
spectra. The general effect that may be interesting for spatial ap-
plications is a large reduction of the pressure fluctuations in the
tunnel.

Figure 16 presents for �=0.8, the Strouhal number evolution
according to the angle of attack. Three values of roughness and
the smooth plate are considered �measurement set 2�. This figure

confirms that St strongly increases when roughness is augmented.
However, this effect is only present for ��2.5 deg �beginning of
the unsteadiness� and ��4 deg �cavity smaller than the plates�.
For a higher incidence, a constant value close to 0.25–0.3 is re-
covered in all cases. It indicates that the surface roughness in the
downstream end of the cavity is the dominant parameter that gov-
erns the modification of the cavitation cycle. For a sheet cavity
longer than 60% of the chord, the smooth surface in the rear part
enables a correct initial progression of the reverse jet and then no
modification of the oscillations is obtained. It suggests that the
reentrant jet is affected by roughness only in the cavity closure
area. This may be due to an increase of its thickness during its
progression toward the leading edge, which makes it less sensitive
to the friction caused by the protrusions. The configuration of
transitional cavity oscillations with roughness, which is not re-
ported in Fig. 16, also leads to nonmodified Strouhal numbers
close to 0.11. This is not surprising, since such cavities are much
longer than the rough plates.

Other information given by Fig. 16 concerns the inception of
cloud cavitation. The angle of attack � at which it occurs progres-
sively increases when roughness is augmented �1.75 deg for the

Fig. 14 Strouhal numbers for various roughness and �=1.3 „measurement set
1…

Fig. 15 Spectra of pressure signal fluctuations at incidence 5
deg and �=1 with „a… a smooth surface „Lcav /Lref=0.7… and „b…
roughness 400 „Lcav /Lref=0.55…

Fig. 16 Strouhal numbers for various roughness and �=0.8
„measurement set 2…
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smooth plate, 2.25 deg for roughness 400�. Below this limit, only
high-frequency fluctuations with no dominant peak on the spectra
are obtained. This is a supplementary indication of the destabili-
zation of the cavitation cycle in the case of a rough wall: periodi-
cal oscillations require a minimum angle of attack slightly higher
than in the case of the smooth wall. This is consistent with the
diminution of the reentrant jet momentum due to friction dis-
cussed previously.

5 Conclusion
The effect of the surface roughness on the dynamics of sheet

cavitation on a two-dimensional foil section was investigated in
this paper. We have focused mainly on cloud cavitation condi-
tions, characterized by large amplitude oscillations involving pe-
riodical vapor cloud shedding. Acquisitions are based on cavity-
length measurements and analysis of the spectra given by the
fluctuating pressure signal in the cavitation tunnel. A careful
analysis of several sets of measurements was performed in order
to identify �i� the different unsteady behaviors in the case of a
smooth foil and �ii� the modification of these behaviors due to
roughness.

Concerning the first point, it has been found that cavitation
numbers � lower than 1.3 systematically lead to Strouhal numbers
close to 0.25; thus far, the sheet of cavitation remains smaller than
about 80% of the chord. In the case of larger cavities, a new
frequency due to the interaction between the foil pressure and
suction sides is obtained, which gives Strouhal numbers ranging
from 0.1 to 0.12. The first configuration corresponds to partial
cavity oscillations, while the second one is similar to transitional
cavity oscillations, according to the theoretical work of Watanabe
et al. �17�. Cavitation numbers higher than 1.3 lead to a progres-
sive increase of the Strouhal numbers. In all cases the cavity
length only depends on the parameter � /�.

Concerning the second point, it has been noticed that roughness
induces a significant diminution of the cavity length, associated
with a clear increase of the Strouhal numbers. This second effect
has been observed mainly for a self-oscillating cavity whose
length is smaller than the one of the rough plates, which indicates
that roughness in the downstream end of the sheet cavity plays a
major role in the arrangement of the cavitation cycle. The general
effect of roughness is a disorganization of the periodical shedding,
characterized by much lower pressure fluctuations than previ-
ously. It has been suggested that the protrusions, which are here
much larger than the viscous sublayer width, cause an increase of
the friction experienced by the reentrant jet. The premature de-
crease of the reentrant jet momentum would thus be responsible
for the modification of the cavity dynamics.
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Nomenclature
d � mean size of the protrusions on the rough

plates, m

f � frequency of the cavity oscillations, Hz
Lref � chord length of the foil, m
Lcay � maximum length of the attached cavity, m
Pref � reference pressure at the inlet of the test sec-

tion, Pa
Pvap � vapor pressure, Pa

Q � mass flow rate in the tunnel, m3/s
Re � Reynolds number Lref�Vref /v
St � Strouhal number f �Lcav/Vref

Vref � reference velocity based on the mass flow rate,
m s−1

� � foil angle of attack
v � kinematic viscosity, m2 / s
� � density, kg m−3

� � cavitation number
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Numerical Investigation
of Multistage Viscous Micropump
Configurations
The viscous micropump consists of a cylinder placed eccentrically inside a microchannel,
where the rotor axis is perpendicular to the channel axis. When the cylinder rotates, a net
force is transferred to the fluid because of the unequal shear stresses on the upper and
lower surfaces of the rotor. Consequently, this causes the surrounding fluid in the channel
to displace toward the microchannel outlet. The simplicity of the viscous micropump
renders it ideal for micropumping; however, previous studies have shown that its perfor-
mance is still less than what is required for various applications. The performance of the
viscous micropump, in terms of flow rate and pressure capabilities, may be enhanced by
implementing more than one rotor into the configuration either horizontally or vertically
oriented relative to each other. This is analogous to connecting multiple pumps in par-
allel or in series. The present study will numerically investigate the performance of
various configurations of the viscous micropumps with multiple rotors, namely, the dual-
horizontal rotor, triple-horizontal rotor, symmetrical dual-vertical rotor, and eight-shaped
dual-vertical rotor. The development of drag-and-lift forces with time, as well as the
viscous resisting torque on the cylinders were studied. In addition, the corresponding
drag, lift, and moment coefficients were calculated. The flow pattern and pressure distri-
bution on the cylinders’ surfaces are also included in the study. Results show that the
symmetrical dual-vertical rotor configuration yields the best efficiency and generates the
highest flow rate. The steady-state performance of the single-stage micropump was com-
pared to the available experimental and numerical data and found to be in very good
agreement. This work provides a foundation for future research on the subject of fluid
phenomena in viscous micropumps. �DOI: 10.1115/1.1949639�

Keywords: Multiple Rotor, Viscous Micropump, CFD Simulation, MEMS

1 Introduction

Micropumps are among the most promising microelectrome-
chanical systems �MEMS� and are ready to be implemented into
many industrial applications. Micropumps operate on principles
far different from those applied to conventional-sized micro-
pumps. Because of the microscopic dimensions of the pump and
its large surface-to-volume ratio, viscous forces dominate over
centrifugal and viscous forces �1�. Positive displacement micro-
pumps are most common, however, they require check valves at
the inlet and outlet, thus complicating their design �1�. Stemme
and Stemme �2� suggested replacing the check valves with a
nozzle at the inlet and a diffuser at the outlet; however, the idea
was not practical since very specific operating conditions were
required in order for the pump to operate correctly. Electrohydro-
dynamic pumps were also proposed, where an electric field passes
through the working fluid, which is a dielectric fluid. As a result,
the induced charges within the fluid cause the fluid to displace,
thus generating flow �3�. On the other hand, electrokinetic pumps
use the moving electric field to displace ions of the electric double
layer, rather than the charges in a dielectric fluid, in order to
generate flow �4�. Lastly, sequential generation of thermal bubbles
was also proposed, where one bubble is generated by the means of
a microelectric heater to serve as a check valve, and is followed
by another bubble, which is generated by another heater and

growing in the opposite direction of the first bubble. As a result,
fluid is pumped in the desired direction, and the process is re-
peated once again �5�.

The viscous micropump, first introduced by Sen et al. �1�, in-
corporates both applicability at the microscale and simplicity in
design. The viscous micropump is simply a cylinder placed eccen-
trically inside a channel with its axis perpendicular to the channel
axis. When the cylinder rotates, a net force is transferred to the
fluid due to the unequal shear rates on the upper and lower sur-
faces of the cylinder, thus forcing the fluid to displace. Its opera-
tion depends mainly on viscous forces, and it can operate in any
situation where viscous forces are dominant. This situation would
exist for either low-viscosity liquids in micropassages, due to the
high surface-to-volume ratio characteristic of MEMS, or for
highly viscous liquids, such as heavy polymers, in macroducts.
Sen et al. �1� performed an experiment to test the pump perfor-
mance. The study focused on the effect of the channel height,
rotor eccentricity, and angular velocity on the pump performance
and on the fluid bulk velocity in the duct.

In a later study, the same research team performed a numerical
simulation of the viscous micropump solving Navier-Stokes equa-
tions for the case of the cylindrical rotor �6�. Critical values for
optimum performance were calculated. The highest bulk velocity
was achieved when the spacing between the plates is around one
and one-half times the cylinder diameter for a fixed eccentricity or
at the maximum eccentricity for a fixed plate spacing. The load-
flow rate curve for the pump was also plotted, with part of the
curve in the negative part of the flow-rate axis. This showed that
the flow would change direction if the load were increased beyond
the pump’s capability. The maximum efficiency of the pump was
determined to be �2.5% for the optimum plate spacing. However,
it was observed that the viscous dissipation might cause a mea-
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surable temperature rise since viscous forces are the driving
forces. In order to check the effect of viscous dissipation on pump
performance, the same team performed a second numerical simu-
lation �7�. In this study, they solved the continuity equation, the
momentum equation with temperature-dependent viscosity, and
the energy equation with viscous dissipation terms retained, all
coupled together. It was determined that viscous dissipation would
not cause a measurable rise in the bulk temperature of the fluid in
MEMS applications, yet it may cause a significant rise in the fluid
temperature combined with steep temperature gradients near the
rotor where the shear stresses are maximum. Decourtye et al. �8�
introduced the effects of the sidewalls of the channel in their
study. As expected, the pump performance decreased in terms of
bulk velocity, yet pumping action existed even for channel widths
less than the rotor diameter. It was observed that the sidewall
effect reduces the channel height corresponding to maximum bulk
velocity and also increases the back pressure at which backflow
occurs.

The transient performance of a single-rotor viscous micropump
was investigated by Abdelgawad et al. �9�. The effect of the mi-
crochannel height, rotor eccentricity, Reynolds number, and pump
load on the transient performance of the single-rotor viscous mi-
cropump was studied in detail. The rotor eccentricity was deter-
mined to be the parameter that affected the transient performance
of the micropump most significantly. The steady-state perfor-
mance was compared to the available experimental data and found
to be in very good agreement.

The present study is an extension of the work conducted by
Abdelgawad et al. �9� and is aimed at studying the transient and
steady-state performance of multistage viscous micropumps
where more than one rotor is used in order to enhance the perfor-
mance. The addition of rotors is expected to improve the perfor-
mance of the single-rotor viscous micropump because these rotors
are essentially being placed in series or parallel inside the micro-
channel thus increasing the pressure rise or flow rate, respectively.
More over, in some cases, the use of more than one rotor is ex-
pected to increase the pumping efficiency because of the interac-
tion between the flow fields around all rotors which helps reduce
the shear stress and, hence, the resisting torque on the rotors. Four
configurations of rotors were studied in detail: the dual-horizontal
rotor, triple-horizontal rotor, symmetrical dual-vertical rotor, and
finally the eight-shaped dual-vertical rotor. Parameters such as
average velocity, drag and moment coefficients, and efficiency
will be calculated. Results obtained in �9� will be used for com-
parison purposes in order to determine the effect multiple rotors
have on the performance of the viscous micropump. The single-
rotor case used for comparison purposes was that of best pumping
effect, namely, S=1.5,�=0.95, and Re=1.

2 Problem Geometry

2.1 Problem Configuration. The present study is a numerical
investigation of multiple rotors inside a microchannel. The prob-
lem configuration for a single rotor is shown in Fig. 1, and the
geometric parameters used are identical to those defined by Ab-
delgawad et al. �9�. The main geometrical parameters in the study
will be the channel height �S�, defined as

S =
h

d
�1�

and the rotor eccentricity �, which indicates the rotor position
inside the channel, defined as

� =
yc

h

2
−

d

2

�2�

Based on this definition, �=0 corresponds to the rotor being cen-
tered on the channel axis and �=1 corresponds to the rotor touch-
ing the lower wall. The rotor is forced to rotate with an angular
velocity �. In this problem, the Reynolds number will be based on
the rotor velocity at its surface U=�d /2 since the average veloc-
ity in the channel ū= �1/h��0

hu dy is an output of the solution.
Therefore, the Reynolds number will be defined as

Re =
Ud

v
=

�d2

2v
�3�

The pressure is specified on the inlet and outlet of the channel,
where a higher pressure is specified at the outlet. The nondimen-
sional pressure rise is defined as

�P* =
Pout − Pin

�v2

d2

, �4�

where Pout is the pressure on the channel outlet and Pin is the
pressure on the channel inlet, � is the fluid density, and v is the
fluid kinematic viscosity. The scale used to nondimensionalize the
time in the simulation was chosen to be the time taken by the rotor
to finish one complete revolution

t* =
t

2�

�

=
t�

2�
�5�

According to this definition, the nondimensional time is simply
the number of revolutions of the rotor. This provides an easier
tracking of the changes in the flow field over time regardless of
the rotor angular velocity. The drag and moment coefficients are
defined as

CD =
FD

1
2�U2d

�6�

and

CM =
M

1
2�U2d2

�7�

where U is the cylinder surface velocity defined before.

2.2 Mathematical Modeling and Boundary Conditions.
The two-dimensional 2D Navier-Stokes equations will be solved
for the specified geometry where all the dimensions will be nor-
malized by the rotor diameter d.

The continuity equation is

� · V� = 0 �8�

and the momentum equation is

�� �V�

�t
+ �V� · �� �V�� = ��� − �� P + ��2V� �9�

where � represents the body forces per unit mass. Based on the
above-mentioned method for nondimensionalizing and assuming
that the flow is incompressible with neglected body forces, the
momentum equation becomes

Fig. 1 Schematic of the micropump geometry for the single
rotor †9‡
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��2d

4
� 1

�

�V*�

�t* + �V*� · �� �V*�� =
��

2d
V*� −

�2

�d3�� P* �10�

which, in nondimensional terms, become

1

�

�V*�

�t* + �V*� · ��V*� =
1

Re
�2V*� −

1

Re2 � P* �11�

The main independent parameters in the solution will be the chan-
nel height S, the rotor eccentricity �, Reynolds number Re, and the
pressure load �P*. When additional rotors are added, new geo-
metrical independent parameters will arise and their effect will be
studied. These new parameters will be mentioned and defined in
the corresponding sections. The flow will be assumed laminar,
incompressible, and unsteady, and the fluid itself is considered
Newtonian with constant properties. No-slip, no-penetration
boundary conditions are assumed on the microchannel walls, and
the fluid velocity is zero on the upper and lower walls and equal to
the rotor surface velocity on the rotor boundary. The pressure is
specified on the inlet and outlet of the microchannel. Pressure will
be always assumed to be zero gage pressure at the inlet, and its
value at the exit will be varied to simulate different loads. The
location of the inlet and outlet were chosen to be eight diameters
upstream and downstream of the microchannel vertical centerline,
respectively. This distance was found to be large enough to
achieve uniform flow at the inlet and outlet without being affected
by the rotors existence. The fluid will be assumed to be initially at

rest �V� =0� and the motion will start by rotating the cylinder
clockwise with an angular velocity �.

3 Numerical Modeling
The CFD package FLUENT 6.0 is used to numerically solve the

Navier-Stokes equations. This CFD package uses the finite vol-
ume method and supports unstructured grids. It enables the use of
different discretization schemes and solution algorithms, together
with various types of boundary conditions. As part of the same
package, a preprocessor, GAMBIT, is used to generate the required
grid for the solver. An unstructured grid with triangular elements
is used. The cylinder surface was divided into 100 equally spaced
elements. The upper and lower walls were divided into 200 non-
uniformly spaced elements using the bell-shaped meshing scheme
with a ratio R=0.4. The grid was finer in regions near the center
and adjacent to the cylinder and coarser in regions far upstream
and downstream. The bell-shaped scheme meshes the edge so that
the node distribution follows a normal distribution curve centered
at the geometric center of the edge. The ratio R specifies whether
the nodes will be denser at the center of the edge or at its ends and
also specifies the intensity of this distribution. In addition to this
meshing method, which refines the grid in the cylinder region,
grid adaptation by the solver itself was performed in the gap be-
tween the cylinder and the lower wall for cases of high eccentrici-
ties, where this gap size is very small. The PISO-SIMPLE algorithm,
where PISO stands for pressure-implicit with splitting of operators,
was used for the pressure-velocity coupling. It is nearly the same
as the SIMPLE algorithm, presented in �10�, except that it takes into
account two additional corrections. The first one is the neighbor
correction. This correction incorporates more iterations into the
pressure correction equation in order to satisfy the continuity and
momentum equations more precisely. Thus, the PISO algorithm
requires more time per iteration, but at the same time reduces the
total number of iterations. Therefore, the total time is much less,
rendering it more suitable for transient applications. The second
correction is the skewness correction, which simply enables the
solver to deal with highly skewed meshes and reduce the total
number of iterations required for the convergence of such meshes.

Two different discretization schemes were used for the time and
momentum equations. A power-law scheme was used for the two
momentum equations, whereas a second-order discretization
scheme was used for the time derivatives. Under relaxation was

used during the solution with the underrelaxation factors varying
between 0.3 and 1 to ensure convergence. Multigrid methods were
also used in order to reduce convergence time. The use of multi-
grids helps reduce the low-frequency error components when the
equations are iterated on a coarser mesh. By default, a V-cycle
multigrid is chosen for the pressure correction equation, whereas a
flexible cycle was chosen for momentum equations. In the
V-cycle, one iteration is first performed on the finest grid to reduce
the high-frequency components of the error and then the solution
is restricted to the coarser grid. After a certain number of itera-
tions on the coarser grid, the solution is interpolated to the finer
grid where it is reiterated. For the flexible cycle, the use of coarse
grid corrections is called only in the cases where the convergence
rate on the current grid is slow.

Different meshes were used to determine the optimum grid size
and to ensure grid-independent solutions. Grid-independent solu-
tion was assured by observing three parameters. The first param-
eter is the distribution of the x-velocity component on a vertical
plane just one diameter from the cylinder axis, which will indicate
whether the grid is fine enough in the neighborhood of the cylin-
der where the largest shear stresses exist. The second parameter is
the change of the drag coefficient of the cylinder with time, which
tests the coupling between the grid size and the time step chosen.
The convergence of the drag coefficient over the grid size was
achieved on the third mesh used. The trend of the drag coefficient
variation with time on all the meshes used was the same, where
differences only occurred between the coefficient values them-
selves. This was also the case for the x-velocity distribution. The
third parameter is the average velocity of the flow at the outlet of
the microchannel, which will give a good indication of the effect
of the grid size in the entire microchannel domain. As a conver-
gence criterion in the present work, the solver iterated the equa-
tions until the scaled residuals are less than 10−5 or until it stabi-
lized at a constant value, which is still small enough to ensure
convergence. This value varied approximately from 10−5 to 3
�10−4, based on the parameters for each specific case. The time
step used for simulating the transient behavior of the flow needed
to be small enough to pick the physical changes over time inside
the flow field, as well as to ensure stability. Different time steps
were tested at the beginning in order to determine the optimum
time step to be used. Obviously, the optimum time step size varies
from one case to another, since the Reynolds number �i.e., the
cylinder angular velocity� is different in the various cases. The
optimum time step should be the one that, when coupled with the
cylinder angular velocity, corresponds to small changes in the
cylinder angular displacement so that any changes in the flow field
that result from this angular displacement may be monitored. The
change of the average velocity inside the microchannel with time
was used as a criterion to determine the optimum step size. The
results for �t=0.0001, 0.001, and 0.01 s �corresponding to �t*

=32�10−6 , 32�10−5 , 32�10−4, respectively� were nearly the
same, whereas for �t=0.1 s �corresponding to �t*=32�10−3�,
instability and large fluctuations in the average velocity occur. The
time step chosen for nearly all cases studied was 0.001 s ��t*

=32�10−5�, which was small enough to recognize all the changes
in the flow field over time, and, in addition, was large enough to
achieve reasonable computation time.

4 Results and Discussion
In this section, the steady-state and transient performance of the

dual-horizontal, triple-horizontal, symmetrical dual-vertical, and
the eight-shaped rotors were compared to those of the single-rotor
viscous micropump. Steady-state cases for the single-rotor viscous
micropump were first simulated by Abdelgawad et al. �9�, and the
results were compared to existing experimental results obtained
by Sen et al. �1� and numerical results obtained from Sharatchan-
dra et al. �6�. The effect of the microchannel height on the flow
rate was studied both experimentally and numerically in �1� and
�6�. For comparison purposes, 11 cases were simulated with chan-
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nel heights ranging from S=1.1 to 3.5 with an eccentricity �
=0.9. In all cases studied, the Reynolds number was kept constant
at Re=0.5 and the pressure load was held constant at �P*=0.5.
Figure 2 shows that the results are in very good agreement with
both the computational and experimental results of the previous
group �1,6�. The rotor eccentricity in the microchannel is the main
parameter that initiates the driving force in the microchannel.
Sharatchandra et al. �6� studied the effect of the rotor eccentricity
on the fluid average velocity in the channel and observed that the
average velocity increases nearly linearly with the eccentricity.
Figure 3 generated by Abdelgawad et al. �9� compares the results
calculated by Sharatchandra et al. �6� to those calculated in the
present study. Both show the linear variation of the average ve-
locity with the rotor eccentricity.

4.1 Dual- and Triple-Horizontal Rotors. The mesh used to
study the dual-horizontal rotor is shown in Fig. 4. The effect of
the horizontal distance between the two cylinders L was studied,
where it was varied between 0.1d and 2d. The parameter 	 was
used and is defined as

	 =
L

d
�12�

Figure 5 presents the variation of velocity with time for different
rotor spacing. As expected, the flow rate for the dual rotor yields
higher flow rates than that for the single rotor at the same back
pressure. At all values of 	 the average velocity inside the channel
increases gradually until it reaches its steady-state value. The flow
field inside the micropump reaches steady state within one rotor
revolution in the single-rotor case and at all values of 	 in the
dual-rotor case. It can be observed that the flow rate increases
with increasing 	 until the value of 	=1.5 after which, the flow
rate remains constant. At smaller values of 	, the two flow fields
around both rotors interact together, thus the pumping action re-
sulting from each rotor is not maximum. Although at 	
1.5 these
flow fields become independent of each other and each rotor pro-
duces its maximum pumping effect. As shown in Fig. 5, the flow
rate for 	=2.0 is 1.72 times that generated in the single-rotor
micropump at the specified conditions ��P*=10�. The effect of
increasing 	 on the flow field is shown in Fig. 6. For small values
of 	, two big vortices and a small one exist in the flow field. The
two big vortices are located upstream of the upstream cylinder and
downstream of the downstream cylinder. The small vortex exists
between the two cylinders on the upper wall. This vortex increases
in size with increasing 	 until it becomes two big vortices en-
circled together inside a bigger vortex at 	=2.

When the development of the flow field with time is examined

Fig. 2 Comparison of average velocity versus channel height
for the single rotor „Re=0.5,�P*=0.5 and �=0.9… †9‡

Fig. 3 Comparison of average velocity versus eccentricity at
�P*=1 and Re=1 for the single rotor †9‡

Fig. 4 Mesh used for the dual-horizontal-rotor viscous micropump

Fig. 5 Comparison of the variation of velocity with time for the
dual-horizontal rotor for different rotor spacing with that for the
single rotor „S=1.5,�=0.95,�P*=10, and Re=1…
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�Fig. 7�, it can be seen that all the vortices start very close to the
cylinder’s surface, as in the case of the single-rotor micropump.
With time, all the vortices move away from the cylinders until
they rest on the channel upper wall.

Figure 8 presents the variation of the drag coefficient with time
in the dual-horizontal configuration for each of the rotors. The
upstream rotor is designated as rotor 1 and the downstream rotor
as rotor 2. The drag coefficient on both rotors is negative �i.e, to
the left� as expected starting with a large value and decreases with
time until it reaches its steady-state value. This behavior is a result
of the high-rotor eccentricity, which means a very small gap be-
tween the rotors and the lower channel wall. This small gap makes
the lower wall obstruct the vertical component of the fluid veloc-
ity forming a semi-stagnation zone, which increases the pressure
on the downstream lower surface of both rotors resulting in a high
drag coefficient. With time, and because of this high pressure, the
fluid velocity is developed and is directed away from the wall,
causing the pressure to be reduced and, consequently, the drag
coefficient decreases.

The contribution of viscous forces to the drag coefficient is
considerably less than that of the pressure forces. Figure 9 com-
pares the value of the viscous drag to that of the pressure drag for
the case of the single-rotor viscous micropump, which was studied
in detail by the authors in �9�. Moreover, it should be noted that
viscous forces on the upper and lower surfaces of the rotor are
opposite in direction, so that they nearly cancel out in cases of low
eccentricities. In cases of high eccentricities, such as the one in
Fig. 8, the viscous stresses on the lower surface are higher than

Fig. 6 Streamlines for different rotor spacing of the dual-
horizontal rotor „S=1.5,�=0.95,�P*=10, and Re=1…

Fig. 7 Streamlines at different times at �=0.5 for the dual-
horizontal rotor „S=1.5,�=0.95,�P*=10, and Re=1…

Fig. 8 Variation of the drag coefficient with time on rotors 1
and 2 for different rotor spacing of the dual-horizontal rotor
„S=1.5,�=0.95,�P*=10, and Re=1…

Fig. 9 Viscous, pressure, and total drag coefficients for �
=0.4 in the single-rotor viscous micropump. „S=1.5,�P*=0,
and Re=1…
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that on the upper surface, thus the net viscous drag will be posi-
tive �i.e., to the right�. Yet it will still be lower than the pressure
drag, and the total drag coefficient will remain negative.

As expected, the drag coefficient curves are nearly identical at
high values of 	 since the flow fields are uncoupled. For smaller
values of 	, slight discrepancies occur as the flow reaches steady
state, where rotor 1 is subjected to higher drag than rotor 2. The
drag coefficient increases on both rotors as 	 is increased. This is
because of the separation of the pressure fields around each rotor
from each other when the rotors are farther apart. When the rotors
are very close to each other, the high-pressure zone downstream
of the first rotor is very close to the low-pressure zone upstream of
the second rotor and so the pressure in the space between the
rotors attains a moderate value. This makes the pressure drag
force on each rotor less than the case when the two rotors are far
from each other, with each one having a high-pressure zone on its
downstream side and a low-pressure zone on its upstream side.

The moment coefficient for rotors 1 and 2 were added to yield
the total moment coefficient. Its variation with time for different
values of 	 is shown in Fig. 10. This total moment coefficient,
together with the Reynolds number, specifies the energy input to
the micropump. At the beginning the moment coefficient is very
high because of the very high-velocity gradients, and shear
stresses, consequently, on rotors surfaces. With time, the velocity
of the fluid layers adjacent to the rotors increases and the velocity
gradient and shear stresses on the rotors’ surfaces are reduced,
causing the moment coefficient to decrease. When the effect of 	
is studied, it is found that the total moment coefficient is higher at
smaller values of 	 because of the increase in the shear stress on
the parts of cylinder surfaces facing each other. The cylinder sur-
face velocities are moving in opposite directions in the region
between the two rotors, thus increasing the velocity gradient and,
hence, the shear stress on the surfaces flanking this middle region.
Hence, the resisting torque and the overall moment coefficient
will increase when 	 is small.

The efficiency of the viscous micropump is defined as

� =
flow energy rise

input mechanical energy

which, when mathematically formulated, gives the following re-
lation:

� =

m�P

�

M�
=

�P*u*S

CMRe2 �13�

Based on the aforementioned information, the efficiency will be
higher for higher values of 	 since there will be less resisting
torque, as shown in Fig. 11. However, the single rotor still has a
higher efficiency since for the dual-horizontal rotor, the resisting
torque is higher than that of the single rotor.

The triple-horizontal-rotor viscous micropump is the same as
the dual-rotor micropump except that three rotors are used �Fig.
12�. The parameter 	 is defined as before in Eq. �12�, and its value
is the same in between adjacent rotors. The behavior for the triple-
horizontal rotor is similar to that of the dual-horizontal rotor. At
steady state, vortices exist adjacent to the upper wall in regions
between rotors �Fig. 12�, as well as in the most upstream and most
downstream portions of the microchannel. As 	 is increased, the
flow fields once again become uncoupled, and therefore the flow
rate increases and the resisting torque decreases, thus increasing
the efficiency. Figure 13 shows the average velocity against the
back pressure for the single-, dual-, and triple-rotor viscous mi-
cropumps. The maximum allowable pressure load for the triple-
horizontal configuration is three times that for the single rotor, as
expected for a series arrangement of three rotors.

Fig. 10 Total moment coefficient at different rotor spacing of
the dual-horizontal rotor „S=1.5,�=0.95,�P*=10, and Re=1…

Fig. 11 Comparison of the efficiency at different rotor spacing
of the dual-horizontal rotor

Fig. 12 Flow field around rotors in the single-rotor, dual-
horizontal-rotor, and triple-horizontal-rotor viscous micropump
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4.2 Symmetrical and Eight-Shaped Dual-Vertical Rotor.
The symmetrical dual rotor is a configuration in which the rotors
work in parallel, as two rotors are placed above each other with
each rotor close to one of the channel walls. In the symmetrical
dual-rotor viscous micropump, no new geometrical parameters
were introduced. The eccentricity � is still the only parameter that
identifies the position of each cylinder inside the channel. Yet, it
has to be mentioned that in the symmetrical dual rotor configura-
tion, the eccentricity of each cylinder is calculated separate from
the other one and, based on the value of �S�, equals half the actual
channel height. This configuration is expected to be very efficient
since one of its characteristics is the reduction of the shear stress,
and hence the resisting torque, on both rotors.

Figure 14 shows the variation of the flow pattern with time for
the symmetrical dual-vertical rotor. The flow pattern is symmetri-
cal about the centerline of the channel, where the flow pattern of
a single rotor is mirrored about the line of symmetry. The main
advantage of the dual-symmetrical-rotor configuration of the vis-
cous micropump is that it permits a higher velocities at the cen-
terline of the channel compared to a zero velocity restriction on
the upper wall if the upper half of the micropump did not exist.
This directly increases the flow rate pumped for the same shear
level �i.e, the same rotor speed�. Moreover, permitting the velocity
to be maximum at the centerline reduces the velocity gradient and
viscous shear stress on the rotor’s inward surfaces, which reduces
the required torque and increases the pumping efficiency. Another
consequence of the fluid velocity being highest at the centerline is
the reduction in the size of the upstream and downstream vortices
above each rotor, as shown in Fig. 14�c�.

Figure 15 compares the variation of the average velocity at the
outlet with time for the single rotor and the symmetrical dual-
vertical rotor at two different eccentricities for �P*=10. The sym-
metrical dual-vertical rotor is capable of overcoming the back
pressure, and therefore the velocity remains positive until steady
state is attained. It must be noted that for the same average veloc-
ity, the symmetrical dual-vertical rotor will deliver a higher flow
rate than the single-rotor viscous micropump because the channel
height is doubled for the first one. For the symmetrical dual-
vertical-rotor micropump, higher eccentricities still yield higher
average velocities, as is the case for the single-rotor micropump
�9�.

In the eight-shaped dual-vertical-rotor micropump, two cylin-
ders rotating clockwise were placed together, one on top of the
other, to form the shape of number eight. This eight-shaped rotor
was placed near the lower wall. This configuration was not ex-
pected to improve the performance of the viscous micropump, yet
it was investigated to expand the knowledge of the viscous micro-

pump, as well as for comparison purposes. Figure 16 shows the
streamlines for this configuration at channel heights S=2.5 and
S=3. It is clear that at S=3, the pump is unable to sustain a net
flow against a pressure of �P*=10, which is not relatively high,
thus a back flow occurs and the flow passes from right to left in
the passage between the upper wall and the big vortex around the
two cylinders. In such a geometrical configuration, it is expected
to have a higher resisting torque on the lower rotor because of its
position between the lower wall and the upper rotor. This position
helps increase the velocity gradient and consequently, the shear
stress on its lower and upper surfaces.

Figure 17 compares the shear stress distribution on the upper
and lower rotors of the eight-shaped rotor to the shear stress on

Fig. 13 Average velocity versus pressure load for the single,
dual-horizontal and triple-horizontal rotors „S=1.5,�=0.95, and
Re=1…

Fig. 14 Variation of the streamlines for the symmetrical dual-
vertical-rotor viscous micropump with time „S=2.5,�
=0.95,�P*=10, and Re=1…

Fig. 15 Comparison of the variation of the average velocity
with time for the symmetrical dual-vertical rotor with that for
the single rotor „S=2.5,�=0.95, and Re=1…
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the single rotor. It is very clear from the figure that the shear stress
is higher on the lower rotor than on the upper rotor and both are
higher than the shear stress on the single rotor. It should be noted
that the eccentricity is based on half the channel height and, there-
fore, the eccentricity based on the entire channel height is greater
than 0.95. This accounts, partially, for the higher values of shear
stress for the eight-shaped rotor. The increase in the shear stress
on the lower rotor will certainly increase its moment coefficient
more than it is on the upper rotor. This is confirmed by Fig. 18,
which compares the moment coefficient on both rotors to that of
the single rotor.

In order to determine which configuration for the multistage
viscous micropump yields the best performance, the variation of
the volumetric flow rate with the pressure load �Fig. 19�, as well
as the variation of the efficiency with time �Fig. 20� for all con-
figurations were plotted. In Fig. 19, it was observed that the per-
formance of the eight-shaped rotor is almost identical to that of a
single rotor. The triple-horizontal rotor can withstand the highest-
pressure load; however, the volumetric flow rate is not very high
with values similar to that generated by the single rotor. The best
compromise is the symmetrical dual-vertical rotor because it
yields the highest flow rate and is also able to accommodate
higher-pressure loads. Figure 20 gives final confirmation that the
symmetrical dual-viscous rotor is superior to all others. The effi-
ciency is much higher than any of the other configurations, with

the eight-shaped dual-vertical rotor yielding the worst perfor-
mance of them all. The second-best configuration is the dual-
horizontal rotor, which is capable of withstanding higher pressure
loads than that for the symmetrical dual-vertical rotor.

Fig. 16 Streamlines in the eight-shaped dual-vertical-rotor mi-
cropump for different S „�=0.95,�P*=10, and Re=1…

Fig. 17 Comparison of the shear stress distribution on lower
and upper rotors of the eight-shaped rotor with that on the
single rotor „S=2.5,�=0.95,�P*=10, and Re=1…

Fig. 18 Moment coefficient on lower and upper rotors com-
pared to the single rotor „S=2.5,�=0.95,�P*=10,Re=1…

Fig. 19 Comparison of the Q-P curves of all the multistage
viscous micropumps to the single-rotor viscous micropump

Fig. 20 Comparison of the efficiency for all the multistage vis-
cous micropumps tested
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5 Conclusions and Future Directions
Multirotor micropumps have been proven to provide flow rates

and back pressures that are higher than single-rotor micropumps.
They simulate the use of more than one pump, either in series or
in parallel, depending on how they are placed relative to each
other inside the micropump. A new geometrical parameter 	 arises
in the case of dual- and triple-horizontal-rotor micropumps, to
account for the horizontal distance between rotors. Both the effi-
ciency and the flow rate increase when 	 increases because of the
reduction in the interaction between the rotors. However, after a
certain distance, the flow fields become uncoupled, there is little
interaction between them, and 	 has no effect on the pump per-
formance. The dual- and triple-horizontal rotors were able to with-
stand higher-pressure loads than the single rotor, since the rotors
are essentially placed in series.

The symmetrical dual-vertical rotor arranges two rotors in par-
allel. Two single-rotor flow patterns are mirrored about the cen-
terline of the channel; thus, there is little interaction of the flow
fields. The flow rate is highest of all configurations studied and
able to overcome high back pressure when the single rotor could
not. The efficiency is highest in this configuration because of the
reduction in the shear stress and the viscous torque on both rotors.

The eight-shaped dual-vertical rotor was studied merely to fur-
ther the knowledge of viscous micropumps and was not expected
to improve the performance of the viscous micropump in any way.
This configuration yields higher shear stress on the rotor surfaces,
when compared to that on the single rotor. Consequently, there is
higher viscous resistance, which hinders the performance of the
micropump.

In terms of performance, the symmetrical dual-vertical-rotor
micropump achieved the best efficiency and highest flow rate,
while the triple-horizontal rotor achieved the highest back pres-
sure with efficiency less than that of the single rotor. The eight-
shaped dual-vertical rotor viscous micropump has the lowest effi-
ciency with a �P*–Q curve very close to that of the single-rotor
micropump. In conclusion, the performance and efficiency of the
viscous micropump have been increased through changing the
pump geometry. This confirms the fact that there is still more to
learn about it and opens the door for more research efforts to
further enhance this performance and efficiency. The simplicity of
the viscous micropump design and its size flexibility provides
great potential for this device in commercial applications and is
thus worthy of further study in the future.

Nomenclature
CD � cylinder drag coefficient
CM � cylinder moment coefficient

d � diagonal length of rotor, m
FD � drag force on cylinder, N/m

h � channel height, m
L � distance between adjacent rotors, m

M � moment on cylinder, N m/m
ṁ � mass flow rate, kg/s

Pin � inlet pressure, Pa
Pout � outlet pressure, Pa

P* � nondimensional pressure
�P � channel pressure rise, Pa

�P* � nondimensional pressure rise
Q � nondimensional volume flow rate

Re � Reynolds number
R � computations residuals
S � nondimensional channel height
t � time, s

t* � nondimensional time
�t � time-step size, s
ū � average velocity inside microchannel, m/s

u* � nondimensional average velocity
U � cylinder surface velocity, m/s

V� � fluid velocity vector, m/s
yc � distance from channel axis to cylinder center, m

Greek Letters
� � body forces per unit mass, m/s2

� � rotor eccentricity
	 � nondimensional distance between adjacent rotors
� � fluid dynamic viscosity, Pa s
v � fluid kinematic viscosity, m2/s
 � angle sweep over surface, rad
� � fluid density, kg/m3

� � fluid shear stress, Pa
�* � nondimensional fluid shear stress
� � rotor angular velocity
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Unsteady Hydrodynamic Forces
due to Rotor-Stator Interaction on
a Diffuser Pump With Identical
Number of Vanes on the Impeller
and Diffuser
Experimental and computational study was developed for unsteady hydrodynamic forces
on a diffuser pump impeller excited by the interaction between the impeller and the vaned
diffuser with the same number of vanes as impeller. Unsteady flow calculations are made
using commercially available CFD software, CFX-TASCflow, as well as the two-
dimensional vortex method. Calculated pressure and fluid forces on the impeller show
good agreement with measured ones. It has been demonstrated that the fluid forces on the
impeller with the same number of vanes as the vaned diffuser are smaller compared with
other combinations of vane numbers. However, the pressure fluctuations are found to be
greater than other cases. �DOI: 10.1115/1.1949640�

Introduction
In a diffuser pump, the centrifugal impeller interferes with its

successive diffuser vanes and produces pressure fluctuations
downstream of the impeller. This phenomenon is the so-called
rotor-stator interaction. Big hydrodynamic forces will be caused
by the pressure fluctuations, which are the main factors that will
generate noise and violent vibration of the main shaft.

Hydrodynamic radial forces on a centrifugal pump impeller
have been extensively studied and reported. Guelich et al. �1�
reviewed, in some detail, the design parameters that affect radial
force. A further summary of the applicable open literature can be
found in de Ojeda and Flack �2�. Stepnoff �3� suggested that the
radial force was a function of the discharge pressure, impeller tip
diameter, impeller tip width, and a constant. Agostinelli et al. �4�
completed an experimental investigation to understand the effects
of specific speed and pump housing geometry on radial force.

The mechanism of the rotor-stator interaction in the diffuser
pump has also been extensively studied. Qin and Tsukamoto �5,6�
and Qin �7� calculated an unsteady flow caused by impeller-
diffuser interaction in a diffuser pump with a singularity method.
Following their works, Shi and Tsukamoto �8� calculated the pres-
sure fluctuations downstream of the diffuser pump impeller using
two-dimensional �2D� and three-dimensional �3D� unsteady
RANS code with standard k-� turbulence models. Wang and
Tsukamoto �10� used an advanced vortex method to calculate the
impeller-diffuser interaction, in which the changing operating
points of pump were taken into account. All of these works con-
tributed to the understanding of rotor-stator interaction in pumps,
however, little work was reported on the cases in which the rotor
and the stator vanes number have common factors, especially
when the number of vanes on the impeller and diffuser is identi-
cal. Traditionally, the case in which the rotor and the stator have
the same vane numbers is thought to be unacceptable for actual
engineering since it will cause great interaction forces.

The objective of this paper is to apply an experimental method
and a commercially available computational fluid dynamics
�CFD� code, CFX-TASCflow, as well as a two-dimensional vortex

method to the hydrodynamic radial forces and the pressure fluc-
tuation in a diffuser pump, which has a six-bladed impeller and a
six-bladed diffuser. The calculated results were compared with the
experimental data. These comparisons will enhance our under-
standing of the mechanism of rotor-stator interaction and the re-
sulting hydrodynamic radial forces.

Test Facility and Method
The arrangement of the test rig and instrumentation system is

illustrated schematically in Fig. 1. In order to avoid cavitation,
water is supplied to the suction port from a large reservoir with a
water level of 1 m above the pump center through a short inlet
pipe. The water discharged from the pump returns to the reservoir
via two symmetrically arranged discharge pipes.

A single-stage diffuser type centrifugal pump is used for the
experiment, and its principal specifications are summarized in
Table 1. The test impeller is installed at the center of a vaned or
vaneless diffuser and a circular casing with two parallel discharge
pipes. In order to measure the influence of various combinations
of impeller and diffuser vane numbers, the diffuser vanes are de-
signed to be removable.

The test pump is driven by a two-pole 7.5 kW induction motor.
The rotational speed of the pump can be adjusted by controlling
the line voltage of the transistor inverter to the motor. The rota-
tional speed of the pump shaft is detected by the pulse signals �60
pulses per revolution�, which are fed to a frequency analog con-
verter for recording. The flow rate in each discharge line is ad-
justed to be equal by flow control valves, and the turbine flow
meters installed in the discharge lines are used to measure the flow
rate. The repetition precision of the flow meters is ±1.22%. The
experimental error on flow rate measurements was estimated to be
±2.1%.

The unsteady hydrodynamic forces acting on the impeller were
measured by strain gages on the rotating shaft of the pump, as can
be seen in Fig. 2. At the same time, the displacements of the main
shaft ��x ,�y� were measured by gap sensors set on the casing wall.
The repetition precision of the strain gages is ±1.05%. The rela-
tion between load cell outputs and fluid forces was obtained dy-
namically by adding a fixed weight to a rotating dummy disk.
Neglecting small cross-interaction, the impeller forces were evalu-
ated using Fx=axEx+bx and Fy =ayEy +by. The experimental error
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on fluid force measurements was estimated to be ±1.7%. Figure 3
shows the relative positions of the reference coordinate systems.
The signals were led to the slip ring and then recorded in a com-
puter data file after A-D �analog to digital� conversion. In order to
investigate the effect of the natural frequency of the main shaft
system, two different material impellers were used in the experi-
ment; one is made of steel and the other is synthetic resin. Be-
cause of the different materials, these two types of impellers have
different natural frequencies; 396 and 947 Hz for the resin and the
steel, respectively. The comparison of the hydrodynamic forces on
both impellers showed that the natural frequency of the main shaft
system has little effect on the experimental data, since the domi-

nant frequencies of the hydrodynamic forces caused by rotor-
stator interaction were the same for both impellers.

Unsteady pressures were measured downstream of the test
pump impeller with a vaned diffuser as well as a vaneless one.
Figure 4 illustrates the unsteady pressure measurement stations on
the shroud-casing side of the diffuser in the test pump. The coor-
dinates of the pressure taps were formed by the cross of five radial
grid lines and three streamwise grid lines in a blade-to-blade pas-
sage as shown in Fig. 4. Because of the limited space in the
measuring sections, the pressure taps for tangential traverse pres-
sure were located only at one radial location in each passage of
the diffuser so that the upstream pressure taps could not affect the
downstream ones. As a result of the numerical calculations by
CFX-TASCflow software, it was found that the circumferential dis-
tribution of the flow in the circular casing has little effect on the
pressure distribution in the diffuser passages; and thus, the blade-
to-blade distributions of unsteady pressure were identified by a
phase shift of the measured data. Moreover, two pressure taps
were set on both the suction and discharge lines for measurement
of the pressure fluctuations in the pipe line. During the tests, un-
steady pressures were sampled in 50 circulations of the impeller,
and then ensemble averaged to compare with the calculation re-
sults. The experimental error on the unsteady pressure measure-
ments was estimated to be ±2.3%.

Semi-conductor-type pressure transducers were used to mea-
sure the unsteady pressures. The repetition precision of the trans-
ducers is ±0.5%. Silicon oil was filled in the lead tube between the
pressure tap and the transducers to construct a pressure measure-
ment system with a higher natural frequency. The viscosity of the
silicon oil was adjusted to keep the balance of gain and phase

Fig. 1 Schematic view of test rig and instrumentation system

Table 1 Specifications of test pump

Rating:
Flow rate Qr 0.1449 m3/min
Total head Hr

4.91 m
Rotational speed N 1750 min−1

Specific speed Ns 202 �m3/min,m,min−1�
Impeller:
Outlet diameter D2

130 mm
Outer passage width b2

6.4 mm
Discharge angle �2

22.5 deg
Number of vanes Zi

6
Diffuser:
Inlet radius R3

67 mm
Passage width b3

10 mm
Outlet radius R4

90 mm
Number of vanes Zd

0, 5, 6

Fig. 2 Schematics of fluid force measurement system

Fig. 3 Schematics of reference coordinate systems for test
diffuser pump

Fig. 4 Locations of pressure taps in vaned diffuser
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delay. In the experiments, the natural frequency of the measure-
ment system is 2348.9 Hz, the damping ratio is 0.728, and the
viscosity of the oil is 276 St. As a result, the gain showed the flat
frequency characteristics, and the unsteady pressures could be
measured by the current measurement system. The signals were
recorded in a computer data file after A-D conversion. The re-
corded data were transformed to the pressure coefficient Cp and
then were ensemble averaged.

Numerical Calculations
In order to deepen the understanding of the experimental re-

sults, the CFX-TASCflow software �9� and a 2D vortex method �10�
are employed for this study.

Numerical Analysis by CFX-TASCflow software. The valida-
tion of this code can be found, for example, in the work of Flath-
ers and Baché �11� and Flathers et al. �12�, and Gu et al. �13�. The
code solves the Reynolds-averaged Navier-Stokes equations in
primitive variable form. The effects of turbulence were modeled
using the standard k-� turbulent model, in which the following
parameters were used, referring to a comprehensive assessment by
Lakshminarayana �14� on the computation of turbomachinery
flows using the k-� turbulence model

c� = 0.09, c�1 = 1.44, c�2 = 1.92, �k = 1.0,

�� = 1.3, and Prt = 0.9

To make the simulation time economical, a wall function is used
to resolve the near-wall flows. The simulation is believed to be

converged when the nondimensionalized maximum residuals are
reduced to 1.0�10−4.

The code allows for connecting simple blocks into a multiblock
assembly. A convenient feature of TASCflow is that the grids are
not required to match at the connecting interface. This makes it
easy to connect casing grids at the critical surface, where one side
is of the smaller area and the other side of the larger one. Whereas
a self-coded program was used to generate the casing grid, the
commercial impeller grid generator, TURBOgrid �15�, is employed
to generate the impeller grid. The total grid size is about 300,000;
about 160,000 for impeller, 100,000 for diffuser, and 40,000 for
the casing and pipe lines. The same wall function was used for all
the runs, and the y+ of the first grid point on the wall is in the
range of logarithmic sublayer of the boundary layer.

In this calculation, as shown in Fig. 5, there are two distinct
components: rotating impeller, and stationary casing and vaned
diffuser. A mixing grid interface between these two components is
defined as the “transient rotor-stator interface,” using the TASCflow
grid attachment facility. All the flow passages were calculated
simultaneously.

The inflow boundary condition was assigned at the entrance of
the inlet pipe as velocity. Inlet turbulence quantities are expressed
in terms of the turbulence intensity Tu and the energy-containing

eddy length scale L�, where Kinlet=3 /2�Tu�V� ��2 , �inlet=kinlet
3/2 /L�,

and �V� � is the local magnitude of the inlet velocity. Here, Tu and L�

were set as 0.03. Variations in these parameters showed little ef-
fect on the pressure distribution in the diffuser and the fluctuation
in the hydrodynamic forces. Mass flow rate was imposed on the
exit of the discharge pipe. It is assumed that the flow is approxi-
mately fully developed at the outlet, and thus zero gradients of k
and � are specified at the outlet. The CFD study ran at the same
conditions as the experiment.

The momentum law was used in the coordinate system shown
in Fig. 6 to predict the radial forces in both the CFD and the
vortex method simulation. In a stationary frame, applying the mo-
mentum law �16� to the control volume formed by the dashed line
in Fig. 6, and then omitting the terms with small effects, gives

FX +
/

A2

cos�� + �t�p�r2,��dA + �
�

�t�
V

dQVx − �/
A2

VX�VrdA

−
/

A1

VX�VrdA� = 0

Fig. 5 Computational domain and grids: „a… Impeller and dif-
fuser; „b… casing and pipe systems

Fig. 6 Schematics of coordinate system and control volume
for fluid force calculation
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FY +
/

A2

sin�� + �t�p�r2,��dA + �
�

�t�
V

dQVY − �/
A2

VY�VrdA

−
/

A1

VY�VrdA� = 0 �1�

Here, A1 and A2 denote the suction and discharge cross-sectional
areas of the impeller, respectively, and Vr denotes the radial ve-
locity of a certain point in the impeller. The second term repre-
sents the pressure forces due to P2, and the forces caused by P1
were omitted because the suction cross section is perpendicular to
the main shaft and, thus, the resultant forces have no effect on
radial forces. The third term represents the force caused by the
rate of change in the fluid momentum in the impeller, and the last
two are the momentum flux across the impeller. The calculated
forces were compared with ones calculated by the direct integra-
tion of the force acting on the entire surface of the impeller �hub,
shroud, and blades�. The difference between the momentum law
and the direct integration method was tested to be small �17�. The
fluid forces have to be compared within the same coordinate sys-
tem, or the phase and the dominant frequency of the fluid forces
may be different. As shown in Fig. 3, the radial forces �FX ,FY�
calculated in the stationary frame are transformed to the rotating
frame �Fx ,Fy� to compare with the experimental results by

Fx + jFy = �FX + jFY�ej�t �2�

Convergence Judgment and Numerical Error Control. All
the computations were performed on a VT-Alpha 600AXP com-
puter �600 MHz Alpha processor, 1 GB RAM�. The time step,
which is related to rotational speed and angular displacement of
the impeller between two successive computations, was set to
0.95�10−dt �360 steps per revolution�. The combination of mesh
density and time step was chosen such that the maximum cell
Courant number �defined as C= �V�	t /	x, where V is the esti-
mated local velocity, and 	x is the corresponding local mesh di-
mension� was 
50, although CFX-TASCflow’s implicit AMG �alge-
braic multigrid coupled� solver does not have this requirement.
The modified transient Rhie-Chow pressure velocity coupling al-
gorithm �9� was used for the unsteady simulation. At each time
step in the transient simulation, the solver performs several coef-
ficient iterations, either to a specified maximum iteration number
10 or to the predefined residual tolerance 0.0001. In the simula-
tion, the maximum number of iterations �10 per time step� was not
reached because the residual target level was achieved first.
Within each time step, iterations between three and five were
found sufficient to limit the solution error in the coefficient loop to
0.0001. The two to four revolutions of the impeller are necessary
to get the convergence to a periodic unsteady solution. The final
numerical results for the comparisons with experimental data were
extracted from the sixth revolution of the impeller, after checking
the convergence of calculated values. In order to determine the
sensitivity of numerical results to the magnitude of the time step
and the grid size, the magnitude and the fluctuation of the fluid
forces were selected on the numerical accuracy basis. Figure 7�a�
shows the comparison of calculated fluid force fluctuations for
360 and 540 time steps per revolution. It can be seen that the
magnitude of the time step has no significant effect on the fluid
force fluctuation. The sensitivity of the model to grid size was also
checked by performing the calculations on two grid systems; one
with 293,437 cells and the other with 370,523 cells, as shown in
Fig. 7�b�. The numerical results showed that accurate computa-
tions are expected from 360 time steps per revolution and 293,437
grids in the present unsteady calculation. Furthermore, various
spatial difference schemes, such as, the first-order UD �upwind
differencing�, the second-order high resolution �modified linear
profile + physical advection correction� were tested at the mesh
density of 293,437 cells. The differences in the results were neg-
ligible. The numerical tests based on two-grid systems and differ-

ent convective flux formulations indicated that the well-known
numerical diffusion �a form of numerical truncation error� and
numerical dispersion �a kind of numerical instability� diminished
to a maximum extent. Moreover, the influences of boundary loca-
tions and boundary specifications were reduced to their respective
minimums. Therefore, for the present calculations, the numerical
deviations from the experimental data can be attributed to physi-
cal modeling errors: �i� difference between CFD pump modeling
and real pump modeling, �ii� pump geometry deviation, and �iii�
turbulence models.

Numerical Analysis by Vortex Method. The hydrodynamic
forces and the unsteady pressure fluctuations were also calculated
by the vortex method of Wang and Tsukamoto �10�. The vortex
method is one of high-accuracy methods in CFD, as explained by
Wang and Tsukamoto �10�: �i� The vortex method is grid-free, and
thus there is no error due to mesh discretization; �ii� The vortices
in the flow field are simulated directly in the Lagrangian method,
and thus there is no error due to turbulence models application in
the complicated unsteady flow; �iii� The variables �e.g., vorticity,
velocity, and pressure� are obtained directly, without an iteration
process at every time step, thus there is no error due to conver-
gence truncation. However, the CPU time for 3D vortex methods
was too huge to be applied in high Reynolds flows in engineering,
until now. The unsteady flow in the test diffuser pump was inves-
tigated by calculating the 2D flow field around the impeller and
diffuser vanes �18�. The relative movement of the impeller and the
diffuser was taken into account. The velocity for a given location
in the flow field was calculated directly by the well-known Biot-
Savart law. The boundary element method was used to obtain the
unsteady pressure according to the calculated velocity and vortic-
ity time to time. Moreover, for a more realistic prediction of the

Fig. 7 „a… Effect of time step on dynamic fluid forces for rated
condition and „b… effect of grid density on dynamic fluid forces
for rated condition
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pressure fluctuations and the unsteady fluid forces, the instanta-
neous pump operation is calculated by considering the change in
the pump operating point �18�. The unsteady hydrodynamic forces
were calculated by the same method as in CFD calculations. For
all the cases with a larger flow rate ratio than 0.70, the results
calculated by the vortex method agree well with the experimental
data. Therefore, the present vortex method is suitable for the cal-
culation of unsteady hydrodynamic forces.

Results and Discussion

Seady Performance and Steady Fluid Forces. Figure 8 shows
characteristic curves of the test pump with the vaned �Zd=6� and
vaneless �Zd=0� diffuser! The steady fluid forces on the impeller
are also presented for the vaned diffuser �Zd=6� in this figure. The
steady characteristics of the test pump and the steady fluid forces
on the impeller were tested for various rotational speeds, and
those were found to be independent on rotational speed for 1000–
1750 rpm. The steady fluid forces do not equal zero, due to the
displacement of the pump shaft. The steady fluid forces are very
small, and almost constant for a wide flow range. The measured
total head rise across the pump is also compared with the one
calculated by CFD in this figure. Good agreement can be found
between the measured and calculated total head rise.

Hydrodynamic Radial Forces. Figures 9�a� and 9�b� show the
effects of flow rate and rotational speed on the unsteady fluid
forces on the impeller for Zd=Zi=6, respectively. Figure 9�a� in-
dicates the time histories of the unsteady fluid forces for three
different rotational speeds �N=1200, 1500, and 1750 rpm�. Figure
9�b� presents the time histories of the unsteady fluid forces for
three different flow rates �85, 100, and 119 %� of the rated flow
rate. In this paper, only x components are presented because of the
similar wave forms of both the x and y components. The effects of
flow rate and rotational speed on unsteady fluid forces were small,
as can be seen in these figures. Experiments are also carried out
for Zd=0, 2, 3, and 7. Table 2 lists the standard deviation of the
unsteady fluid forces Kx. As can be seen in Table 2, the unsteady
fluid forces for Zd=0,2,3, and 6 are much smaller than for Zd=5
and 7. The results will be presented only for three representative
cases, Zd=0, 5, and 6 among the cases of Zd=0, 2, 3, 5, 6, and 7,
in this paper. The impeller for Zd=2 and 3 also caused smaller
forces by the same mechanism as the case of Zd=6; and the case
of Zd=7 caused larger forces by the mechanism similar to the case
of Zd=5.

Figure 10 indicates the time histories of the measured and cal-
culated unsteady hydrodynamic forces during two revolutions of
the test impeller. The experimental data are phase averaged for 55
revolutions of the impeller, while the results calculated by CFD

and the vortex method are not phase averaged, but instantaneous.
The wave form of unsteady hydrodynamic forces calculated by
the vortex method and CFD shows good agreement with the ex-
perimental data. In the vortex method, new vortices are induced
near the solid boundary and shed into the flow field at every time
step, thereby forming the vortex pattern. The interactions between
these new vortices and existing ones result in an energy transfer
cascade between the vortices and the pressure fluctuating in the
higher frequency. The lack of higher frequency in the pressure
predicted by RANS code shows that the RANS method has some
limitation in unsteady flow applications. The higher frequencies in
forces calculated by the vortex method may be attributed to the
effect of the vortex shedding patterns.

As shown in Fig. 10, the unsteady hydrodynamic forces for
Zd=6 are much smaller than those for Zd=5, and show trends
similar to that for Zd=0 without interaction between the impeller
and diffuser vanes. The small hydrodynamic forces for Zd=6 are
due to the circumferentially symmetric arrangement of the vanes.

Fig. 8 Steady characteristic curves of test pump; experimen-
tal uncertainty in �= ±2.1%, in �= ±2.3%, in KR= ±2.5%

Fig. 9 Time histories of dynamic fluid forces; Zd=6; experi-
mental uncertainty in Kx= ±1.7%: „a… Effect of rotational speed,
� /�0=1.0; „b… effect of flow rate, N=1750 min−1

Table 2 Standard Deviations of Kx for various diffuser vanes’
number

Diffuser blade number 0 2 3 5 6 7

Standard deviation 0.0044 0.0059 0.0062 0.035 0.0058 0.020
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The fluid forces are the results of the integration of the pressures
due to the interaction between the impeller blades and the diffuser
vanes. The interaction occurs simultaneously between each impel-
ler blade and diffuser vane for Zd=6. The same amplitude of the
pressure fluctuations results in smaller amplitudes of fluid forces
for Zd=6.

Figures 11�a� and 11�b� show the CFD predicted velocity vec-
tors in the blade-to-blade plane at the midspan for Zd=6 and Zd
=5 in the test-pump stage at the instant t1=0.0238 s shown in Fig.
10�b�. The color shows the magnitude of the relative speed. As
can be seen in these figures, the low-speed regions of each flow
passage for the diffuser with five blades are much more asymmet-
ric than that for the one with six blades. As shown in an auxiliary
graph, which shows the circumferential distributions of radial and
tangential velocities �Vn ,Vt�, more circumferential symmetry can
be found in the diffuser with six blades than the one with five

blades. Figures 12�a� and 12�b� show the vortex pattern calculated
by the 2D vortex method for Zd=6 and Zd=5 in the test-pump
stage at the instant t2=0.00763 s shown in Fig. 10�c�. The red and
blue colored dots in Figs. 10�a� and 10�b� show the rotating di-
rection of vortices; that is, the red and blue colored dots represent
the counter clockwise and clockwise directions, respectively. Ve-
locity vectors in the blade-to-blade plane are also presented in
Figs. 12�a� and 12�b�. Two ellipses have been added to indicate
the asymmetric flow structure for the case of the diffuser with five
blades, while this kind of asymmetric flow structure cannot be
found for the case of the diffuser with six blades. These figures
show more circumferentially symmetric flow patterns and vortic-
ity structures for Zd=6 than for Zd=5. A circumferentially sym-
metric flow field leads to small hydrodynamic forces. Hydrody-
namic forces caused by the impeller-diffuser interaction are
smaller for Zd=6=Zi, compared to the one for Zd=5.

Unsteady Pressure in Vaned Diffuser Passage. Figure 13�a�
indicates the time history of the unsteady part of the instantaneous
pressure coefficient on the suction-side pressure tap �r1 ,c1� near
the diffuser vane leading edge �see Fig. 4�. The wave forms of
unsteady pressure calculated by CFD and the vortex method show
good agreement with the measured one. The magnitude of the
pressure fluctuations predicted by the vortex method, however, is
the biggest because of the 2D flow assumption in the calculation.
The power spectral density function shown in Fig. 13�b� demon-
strates that the pressure fluctuates with the impeller-blade passing
frequency NZi and its higher harmonics. Good agreement can be
seen between the measured frequency components and those cal-
culated by the vortex method and CFD.

Figure 14 shows the comparisons of the pressure fluctuations
for Zd=6 and Zd=5 on the pressure taps �r1 ,c1� , �r2 ,c1�, and
�r3 ,c1� predicted by CFD. As shown in Fig. 14, the fluctuations of
the unsteady pressure decay much more slowly for Zd=6 than for
Zd=5, with increasing radius. Comparing the magnitudes of the
unsteady pressure, it can be found that the magnitude of the pres-
sure fluctuations for Zd=6 are much bigger than those for Zd=5;
and the higher-frequency components are larger for Zd=6 than
those for Zd=5. The local pressure fluctuation is larger when the
vane numbers on the impeller and diffuser are identical, and
should not be neglected in actual engineering design. The interac-
tion between every impeller blade and diffuser vane occurs simul-
taneously for the diffuser with six blades. The pressure fluctua-
tions have the same amplitude and phase in this case, and thus the
circumferential pressure gradient is stronger than for nonidentical
numbers of impeller and diffuser vanes. Therefore, the diffusion
of pressure may be weaker in the downstream direction because of
a stronger circumferential pressure gradient.

Figures 15�a� and 15�b� show the CFD-predicted and measured
instantaneous pressure at the pump inlet for Zd=6 and Zd=5. The
effect of the length of the suction pipe is also calculated using two
different pipe lengths, 150 and 250 mm. The pressure fluctuations
for Zd=6 are found to be much larger than that for Zd=5. The
suction pipe length has little effect on the pressure fluctuation at
the pump inlet. As can be seen in this figure, the unsteady pressure
has much larger magnitude for Zd=6 than for Zd=5.

Figure 16 shows the CFD-predicted pressure fluctuation in the
pump discharge. As shown in this figure, the pressure fluctuation
has a larger magnitude for Zd=6 than for Zd=5, and the pressure
fluctuations in the pump discharge have almost the same magni-
tude as that in the pump inlet.

Figure 17 shows the power spectrum density of the measured
unsteady pressure at the pump inlet and discharge. As shown in
this figure, the dominant frequency of the unsteady pressure at the
pump inlet is NZi, whereas the higher harmonies are also domi-
nant at the pump discharge in addition to the NZi component. The
unsteady fluctuations are very weak for the other combinations of
the numbers of impeller and diffuser vanes. Therefore, it can be
concluded that the larger fluctuation of the inlet and discharge

Fig. 10 Time histories of dynamic fluid forces for various dif-
fuser vane numbers „N=1750 min−1,� /�0=1.0…, experimental
uncertainty in Kx= ±1.7%: „a… Measured, „b… CFD predicted, and
„c… calculated by vortex method
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unsteady pressures is not due to the resonance of the pipe system,
but is caused by the strong potential interaction, which decays
more slowly.

Conclusions
A theoretical and experimental investigation was performed for

unsteady hydrodynamic force on the impeller due to the rotor-
stator interaction in a diffuser pump when the numbers of vanes
on the rotor and stator are identical. The fluctuations of pressure
and hydrodynamic forces were computed using the commercially
available CFD software, CFX-TASCflow, and the 2D vortex method.

Fig. 11 Velocity diagram calculated by TACSflow „at t= t1 in Fig. 10„b…: „a… Zd
=6 and „b… Zd=5

Fig. 12 Vorticity distribution and velocity vectors calculated
by vortex method „at t= t2 in Fig. 10„c……: „a… Zd=6 and „b… Zd=5

Fig. 13 Pressure fluctuation at station „r1 ,c1…,� /�0=1.0, ex-
perimental uncertainty in f= ±3.1%, in Sxx= ±5.5%, „a… time his-
tories of �Cp and „b… power spectrum
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The calculated results were compared with the measured one, and
it was found that the pressure fluctuations in the diffuser passage
and the hydrodynamic forces acting on the impeller can be pre-
dicted by the current 3D CFX-TASCflow software, and the present
2D vortex method. As a result of the present study for the case
when the number of the impeller vanes equals to that of the dif-
fuser, the following conclusions are derived, compared with the
case with the number of impeller vanes different from that of the
diffuser:

1. Hydrodynamic forces acting on the diffuser pump impeller
are smaller for the circumferentially symmetric arrangement
of vanes.

2. Local pressure fluctuations in the diffuser passages down-
stream of the impeller have larger magnitude, and the decay
of the pressure fluctuations downstream is slow. Moreover,

the pressure includes the higher harmonics of blade passing
frequency.

The combination of impeller and diffuser with identical vane
numbers can be employed because of its smaller unsteady forces,
although the pressure fluctuations are bigger compared to other
combination cases.
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Fig. 14 Calculated pressure fluctuation in vaned diffuser pas-
sage � /�0=1.0: „a… Station „r1 ,c1…, „b… station „r2 ,c1…, and „c…
station „r3 ,c1…

Fig. 15 Pressure fluctuations at pump inlet, � /�0=1.0: „a…
CFD predicted and „b… measured

Fig. 16 Calculated pressure fluctuation at pump discharge
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Nomenclature
A � area

BEP � best efficiency point
b2 � impeller discharge width
Cp � pressure coefficient =�p−�gHs� / ��u2

2 /2�
Fx ,Fy � hydrodynamic force in x and y directions

FR � hydrodynamic force in radial direction
f � frequency

H � total hydraulic head rise across pump
Kx ,Ky � normalized hydrodynamic force components,

Kx,y =Fx,y / ��u2
2�D2b2 /2�

KR � normalized radial hydrodynamic force
N � rotational speed

Nt � number of impeller revolutions
PS � pressure side
Ps � total pressure at pump suction port

p � static pressure
Q � flow rate

R2 � radius in pump geometry
SS � suction side
Sxx � power spectrum density

t � time
t* � nondimensional time =t /Ti
u2 � peripheral speed of impeller =R2�

V̄ � absolute velocity
X ,Y � stationary coordinates �R=	X2+Y2�
x ,y � rotating coordinates

Z � number of vanes
	Cp � nondimensional unsteady pressure =Cp−Cp

�X ,�Y � displacements of the main shaft in X and Y
direction

 � flow coefficient, Q /2�R2b2u2
� � pump efficiency
� � density
� � standard deviation
�d � shaft power coefficient

� � impeller angular velocity =2�N
� � total head rise coefficient =2gH /u2

2

Subscripts
d � diffuser
i � impeller

X ,Y � component in X and Y direction
0 � rated condition

Superscript
- � time averaged
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Performance and Development of
a Miniature Rotary Shaft Pump
The development and performance of a novel miniature pump called the rotary shaft
pump (RSP) is described. The impeller is made by boring a 1.168 mm hole in one end of
a 2.38 mm dia shaft and cutting slots in the side of the shaft at the bottom of the bored
hole such that the metal between the slots defines the impeller blades. The impeller
blades and slots are 0.38 mm tall. Several impeller designs are tested over a range of
operating conditions. Pump performance characteristics, including pressure rise, hydrau-
lic efficiency, slip factor, and flow rate, are presented for several different pump configu-
rations, with maximum flow rate and pressure rise of 64.9 ml/min and 2.1 kPa, respec-
tively, when the working fluid is water. Potential applications include transport of
biomedical fluids, drug delivery, total analysis systems, and electronics cooling.
�DOI: 10.1115/1.1949641�

Introduction
The area of microfluidics is developing with many new sensors,

separation devices, drug delivery systems, and other small-scale
and microscale fluidic devices. For many of these devices there is
a need to circulate or move fluid through macro and microscale
channels. A variety of micropumps are available to meet this need,
generally to fulfill specific applications �1�. These include mem-
brane pumps �2–8� �both without check valves �2–5� and with
check valves �6–8��, electrohydrodynamic �EHD� pumps �9–11�,
electrokinetic �EK� pumps �12,13�, rotary pumps �14–18�, peri-
staltic pumps �4,19–21�, ultrasonic pumps �22,23�, and several
other types of pumps �24–27�. Other small-scale pumps have been
developed for uses as blood pumps in ventricular assist devices
�28–30�. Nonmechanical pumps, such as the electrohydrodynamic
and electrokinetic pumps, do not have moving parts, which in-
creases reliability. However, such devices are generally limited by
low flow-rate and pressure-rise capabilities, the applications of the
pump, the working fluids that can be pumped, and high supply
voltage requirements �1�. Mechanical pumps, such as rotary, peri-
staltic, and membrane pumps, have a wide variety of possible
working fluids and applications. However, such mechanical mi-
cropumps �such as rotary micropumps� are believed to be feasible
only when they are greater than a certain size �1�.

One motivation of the present effort is to demonstrate the op-
eration and feasibility of a millimeter-scale pump, which imposes
fluid motion and pressure rise by means of viscous and inertial
forces. The behavior and performance of macroscale centrifugal
pumps are well established and well known. However, the dynam-
ics, performance, and efficiency of centrifugal pumps change as
the size of the pump is altered. For example, secondary flows, and
the losses associated with them, become more important as mac-
roscale impeller passage size decreases. As size decreases further,
surface �viscous� forces become more significant �31� and can
dominate the performance of the pump. However, this does not
appear to prevent the operation of the centrifugal micro- and
minipumps developed by Ahn and Allen �17� and Hainan et al.
�14�. The micropump by Ahn and Allen �17� is a radial-inflow–
radial-outflow design and is powered by an integrated magnetic
micromotor with a 12 pole, 500 �m dia stator that also acts as the
impeller. The advantage of this pump is the integrated magnetic
motor, which also serves as a completely sealed pumping chamber
with no leaks. This pump reaches a maximum flow rate of

24 �l /min, with a maximum theoretical pressure rise of 100 Pa.
The mini-pump by Hainan et al. �14� is a centrifugal pump with
an axial inflow and a radial outflow configuration. This pump is
created using precision machining techniques and measures
6 mm�12 mm. This axial-inflow–radial-outflow pump produces
a maximum flow rate of 100 ml/min, with a maximum pressure
rise of 10 kPa. One disadvantage of this micropump is the poten-
tial leakage at the shaft-pump housing interface, which creates
losses and reductions in performance. Even though some flow
conditions are provided, extensive performance data for these
pumps are not provided, nor are any details given regarding ef-
forts to optimize the pump and impeller designs.

The present paper presents a novel rotary pump �shown sche-
matically in Fig. 1�, which has a 2.38 mm dia impeller and rela-
tively high hydraulic efficiency at low flow rates. The design
modifications �32�, relative to other small-scale centrifugal de-
vices, include the impeller integrated into the body of the shaft,
instead of on the top of the shaft. This design is unique and novel
because of its simplicity, which allows it to be easily manufac-
tured at low cost, and because all problems of tip blade clearance
and flow leakage around the blade tips are not present. Pump
performance is characterized since the pressure rise, flow rate, and
the hydraulic efficiency are given for a wide range of impeller
speeds and impeller configurations. Tested impeller designs in-
clude radial two-, four-, and six-blade; backward-curved four-
blade; and forward-curved four-blade arrangements. The fluid
flow for each impeller design is throttled using outlet tubing inner
diameters of 0.254, 0.508, and 1.397 mm of the same length, or by
placing a valve at the end of the 1.397 mm outlet tubing. The
present pump, or a variation of it, is useful for a variety of micro-
biological and biomedical analysis systems, electronics cooling,
and drug delivery devices. For example, a larger-scale version of
this pump has potential use as a blood pump for a ventricular
assist device.

Pump Configuration and Geometry
One important dimension of many centrifugal pumps is the gap

distance between the tips of the blades and the pump housing. As
the gap increases, there is more leakage across blades and the
overall hydraulic efficiency of the pump decreases. If the gap is
too small or zero, then the blades can be damaged by contacting
the pump housing. On a macroscale, this “gap problem” is gener-
ally insignificant, but on a microscale, or a millimeter-scale, the
gap between the tips of the blades and the pump housing can be
about the same as the height of the impeller blades.

The design of the rotary shaft pump �RSP� eliminates this “gap
problem.” The RSP impeller is constructed by boring a hole in the
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end of a shaft and then cutting slots in the side of the shaft at the
bottom of the bored hole as shown in Fig. 1, which presents a
cutaway view of the RSP impeller. Thus, the metal between the
slots acts as the blades of the impeller, and the slots form passages
between the bored interior and outer shaft surface. The gap at the
tip of the blades is zero because the tips of the blades also connect
to the shaft.

The rotating shaft is mounted using bearings located above and
below the exit plenum, which are mounted in the pump housing.
The volute and an outlet channel are then located in the region
between the upper and lower bearings and pump housing, as seen
in Fig. 2. The water reservoir is connected to the pump housing by
a plastic tube with an inner diameter of 4.5 mm and length of 381
mm. This plastic tube is press fit into the inlet channel as shown in
Fig. 2. There is a continuous channel, from the inlet tubing,
through the pump housing and top of the upper bearing, to the
inlet of the RSP. Inside the channel through the upper bearing, the
fluid flow transitions from a nonrotating bearing wall to the inside
of a rotating shaft. The bearing forms a seal for the spinning shaft
of the RSP, which reduces the leakage from the impeller outlet to
the shaft inlet of the RSP. The sidewalls of the volute and part of
the outlet channel are formed by a piece of machined brass shim
stock that is 416 �m tall. This volute and outlet channel is aligned
with the slot ports of the shaft. With this construction, when the
shaft spins, centrifugal forces from the spinning impeller shaft
forces fluid flow through the shaft inlet, through the interior of the
shaft, through the slots, out through the slot ports, into the volute,

and then into and through the outlet channel, as shown by the
arrows in Figs. 1 and 2. The volute design employed for the
present investigation, to minimize the effects of surface forces, is
called the open volute design. The open volute design is charac-
terized by a large “open” channel from the impeller to the exit
plenum, as shown in Fig. 3.

One of the purposes of a volute is to efficiently direct fluid
toward the outlet channel. The volute designs employed in mac-
roscale pumps, where fluid motion is induced by inertial forces,
are different from the design employed here. This design differ-
ence is because flow from the impeller exit and within the volute
is significantly influenced by both inertial forces and surface
forces. The present open volute design increases the width and
maximizes the hydraulic diameter thereby decreasing the average
fluid velocity and velocity gradients, which also reduces viscous
losses.

Pump Component Fabrication
There are five main fabricated components of the rotary shaft

pump assembly: �i� the impeller, �ii� top housing, �iii� bottom
housing, �iv� bearings, and �v� volute.

Fabrication of the impeller is realized using precision machin-
ing techniques. A lathe is used to obtain the desired outside diam-
eter of the shaft and to bore the hole in the end of the shaft. The
cone shape at the inlet of the shaft is made using a center drill.
Slots are then cut into the side of the shaft using a milling ma-
chine and an indexing tool. The impeller is made from 304 stain-
less steel. Five impeller designs are constructed for testing: radial
two-, four-, and six-blade; backward-curved four-blade; and
forward-curved four-blade. The blades are evenly spaced around
the circumference of the shaft. The blades on the impellers are
0.38 mm tall �the slots are 0.38 mm tall�. The geometry of the
backward-curved four-blade impeller is shown in Fig. 4. The ge-
ometry of the other impellers is shown in Fig. 5. The backward-
curved four-blade impeller has �1 and �2 angles of 80 and 85 deg,
respectively. The forward-curved four-blade impeller has �1 and
�2 angles of 144 and 114 deg, respectively.

The top housing is made from acrylic to allow the flow passing
into and through the pump to be visualized. The top housing has
an inlet channel and outlet channel, as seen in Fig. 2, and also has
two pressure ports. The first pressure port is connected to the inlet
channel passage, as seen in Fig. 2, and is just above the upper
bearing at the inlet to the top of the rotary shaft pump. The second

Fig. 1 Cutaway view of the rotary shaft pump „RSP… impeller.
Shown is the radial four-blade impeller. Arrows indicate flow
direction.

Fig. 2 Cutaway view of the RSP assembly

Fig. 3 Open volute configuration
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pressure port is connected to part of the volute and comes through
the upper bearing into the volute region about 2 mm from the
outer surface of the shaft. The diameter of the pressure ports at the
fluid channel interface is �0.4 mm. Each of these then expands to
3.1 mm. The ends of clear plastic tubes are press fit into the 3.1
mm dia holes, and the opposite ends of the tubes are connected to
opposite sides of the differential pressure transducer �which is
described later�. Thus, the pressure transducer measures the dif-
ferential pressure between the two pressure ports. The bottom
housing is made from aluminum and contains the lower bearing.
The bottom housing also has a recess that forms the exit plenum.
The expansion of the fluid channel as it enters the exit plenum
slows the fluid and minimizes losses as the fluid turns to the outlet
channel.

The bearings are made from Torlon, a strong self-lubricating
plastic. The upper and lower bearings are press fit into the top and
bottom housing, respectively. Torlon is used because it has a low
coefficient of friction and can be easily machined. The outer di-

ameter of the bearings is 6.35 mm, and the inner diameter is 2.38
mm. The locations of these bearings are shown in Fig. 2.

The volute is machined from brass shim stock using a computer
numerically controlled �CNC� milling machine and is positioned
and designed as seen in Figs. 2 and 3. Each piece of brass shim
stock is 104 �m thick. Thus the height of the volute can be
changed by stacking pieces of brass shim stock. For all the present
tests, a height of 0.416 mm is used because it is just larger than
the height of the slots located in the shaft.

Pump Performance
Parameters that characterize pump performance include head

pressure rise, volumetric flow rate, overall slip factor magnitude,
and hydraulic efficiency. The Euler equation relates pumping head
to impeller geometry, speed of the impeller, and the flow rate of
the fluid �33�. For the impeller configuration shown in Fig. 4, this
equation is given by

Hth =
1

g
�U2Cu2 − U1Cu1� �1�

With the present impeller arrangement, shown in Figs. 1 and 2, the
rotating hollow interior of the RSP transfers momentum to the
passing fluid through viscous forces. This “preswirl” can be sig-
nificant on a millimeter- or micrometer-scale, especially when the
ratio of the hollow interior length to diameter is large and the
circumferential wall velocity is greater than the average axial fluid
velocity. The preswirl may aid the overall pumping process by
reducing the sudden acceleration of the fluid at the inner blade tip,
which may reduce the flow separation near the leading edge of the
impeller blade. Tangential components of absolute velocity are
also induced at the inlets of the slots that make up the pump
impeller. The spatially averaged magnitude of this tangential fluid
motion can be characterized using �U1. The contribution to theo-
retical head is then contained in the last term of Eq. �1�, which can
then be expressed using U1Cu1=�U1

2. This imposed inlet swirl
then reduces the work required by the impeller blades, for a par-
ticular magnitude of induced overall pressure rise for the pump.

In general, even though some local swirling motions may be
induced near the slot inlets, the overall effects of the inlet swirl on
the present pump configuration are believed to be relatively small,
and so they are neglected to give ��0 and Cu1=0. The Euler
equation, with no inlet preswirl, or no prerotation of the fluid at
the inlet of the impeller, is then employed to analyze the present
experimental data. The corresponding form of this theoretical
head equation is given by

Hth =
1

g
�U2Cu2� �2�

Fluid slip is present when the actual tangential component of ab-
solute velocity of the flow at the impeller exit Cu2 deviates from
the ideal value �Cu2,i� given by the outlet blade angle �2 �34� as
given by

Cu2,i = U2 −
cot��2�Q

�D2h
�3�

Slip thus occurs when the flow through the pump deviates from
the exact contours of the impeller blades �34�. In the present study,
a slip velocity and a slip factor are employed that are defined
using equations of the form �35�

v�s = Cu2,i − Cu2 �4�
and

� = 1 −
v�s

U2
�5�

Substituting Eqs. �3�–�5� into Eq. �2� then gives an equation for
the theoretical pumping head �35�, which can be written as

Fig. 4 Impeller blade configuration and angles. Impeller
shown is the backward-curved four-blade impeller.

Fig. 5 Impeller blade configurations for the „a… radial two-
blade, „b… radial four-blade, „c… radial six-blade, and „d… forward-
curved four-blade impellers

754 / Vol. 127, JULY 2005 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Hth = �
U2

2

g
−

U2cot��2�Q
�D2hg

�6�

The slip factor thus provides a means to relate volumetric flow
rate �Q� to Euler or theoretical head Hth. Although the actual
pumping head Hact is given by subtracting the flow losses from
Hth, the actual Q−Hact characteristics are often well represented
by Q−Hth characteristics, especially when the flow losses are rela-
tively small. With radial impeller designs, �2=90 deg and the
second term in Eq. �6� is zero. For the corresponding impeller
configuration shown in Fig. 5 �with constant rotational speed�, the
nondimensional theoretical head ��th� is constant as the flow rate
increases and represented by the horizontal line in Fig. 6. With
forward-curved impeller designs, �2	90 deg, and constant speed,
Fig. 6 shows that nondimensional theoretical head increases as the
flow rate increases. Backward-curved impeller designs have �2

90 deg, and the nondimensional theoretical head decreases as
flow rate increases for constant impeller rotational speed, which is
also illustrated in Fig. 6. Here, the flow rate and head are normal-
ized using the equations given by

� =
4Q

�D2
2U2

�7�

and

� =
Hg

U2
2 �8�

Note that � can be given either in terms of Hth or Hact, which
leads to �th and �act respectively.

In the present investigation, the slip factor correlation proposed
by Wiesner �36� is used to determine � magnitudes in the RSP
impellers. This correlation is given by

� = 1 −
�sin �2

n0.7 �9�

Slip-factor correlations proposed by Stodola �37�, Stanitz �38� and
Paeng and Chung �39� are not employed because the values pro-
duced from these correlations are unrealistic and unreasonable for
the RSP impellers tested.

The actual measured head Hact, measured between the pump
inlet and outlet �described earlier�, is generally less than the the-
oretical head given by Eq. �6� since Hth represents the work im-
posed onto the fluid around the circumference of the pump impel-

ler. The actual measured head �Hact� is based on the fluid density,
gravitational constant, and the pressure measurements made at
pressure ports 1 and 2 �shown in Fig. 2�, and is given by

Hact = �P/g �10�
Hydraulic efficiency accounts for the flow losses in the volute
between the circumference of the pump impeller and locations at
the pump inlet and outlet. As such, hydraulic efficiency relates Hth
and Hact and is determined using

Hact = Hth�H �11�
With the slip factor, the hydraulic efficiency is then a useful pa-
rameter for characterizing the performance of the different impel-
ler designs, volute arrangements, and pump configurations. The
Wiesner �36� slip-factor correlation is widely used for macroscale
centrifugal impellers and also provides viable representations of
physical behavior for micro and miniscale pumps. The Wiesner
slip correlation is employed for analysis of the miniscale pumps of
the present study because most other slip-factor correlations
�37–39� give values that are physically implausible.

Experimental Apparatus and Procedures
The rotary shaft pump is powered by an externally mounted

Maxon EC32 number 118891, brushless DC motor that is 32 mm
in diameter, with an 80 W power rating. The maximum speed is
25,000 rpm, with a stall torque of 0.35 N-m. The maximum test-
ing speed is limited by the maximum speed of the optical encoder
�16,000 rpm� attached to the motor shaft. The motor has a torque
constant of 7.45 mN-m A−1 and a voltage constant of
1281 rpm V−1. The brushless motor is controlled by an Advanced
Motion Controls power amplifier �Model #BE12A6�. The power
amplifier has a DC supply voltage of 40 V, a peak current of 12 A,
and continuous current rating of 6 A. A negative feedback control-
ler is employed to maintain constant speed for any variation in
torque. The speed is controlled by adjusting a 15-turn potentiom-
eter. The speed range is 100–15,300 rpm. The motor controller
determines the rotational speed from the signal from an optical
encoder attached to the motor shaft. This apparatus produces a
voltage signal that is proportional to speed and one that is propor-
tional to motor current. These voltages are measured using a Kei-
thley 131 Digital Multimeter.

The test setup is shown in Fig. 7 and includes a water reservoir,
which is large enough that the water-level change during opera-
tion is negligible. The outlet channel is connected to the outlet
tubing. All outlet tubing is a constant length of 89 mm. The inside
diameters of the outlet tubing are changed to throttle the outflow
of the rotary shaft pump. The outlet tubing inside diameters �D�
are 0.254, 0.508, 1.397, and 4.5 mm. The outflow of the RSP is
also throttled using a valve at the exit of the 1.397 mm outlet
tubing. The pump housing is mounted to the base of a linear slide.
The brushless motor and coupling shaft are mounted to the shuttle
of the linear slide. The coupling shaft is used to connect the im-
peller shaft with the motor shaft. The coupling shaft is made from
aluminum and is secured by ball bearings at each end. The rotary

Fig. 6 Idealized trends of nondimensional pump head and
nondimensional flow rate for different impeller designs

Fig. 7 Experimental testing apparatus. Differential pressure
sensor measures pressure rise across the pump. Motor con-
troller has an output signal for shaft speed and motor current.
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shaft pump impeller shaft is connected to the coupling shaft. The
position of the shuttle, along with the motor and impeller shaft,
are adjusted and secured using 4-40 positioning bolts. There is one
positioning bolt at each of the two ends of the shuttle, such that
one positioning bolt is used to adjust the position and the other is
used to immobilize the shuttle. A microscope is used to aid the
positioning of the impeller shaft by means of the positioning bolts.
The microscope is an Infinevar Continually-Focusable Micro-
scope �CFM� �0-330X magnification�, manufactured by Infinity
Photo-Optical Co., with a Hitachi HV-C20U-S4 video camera
connected to a Sony Tinitron PVM-14N5U high-resolution moni-
tor.

The pressure ports in the pump housing, shown in Fig. 2, are
connected to a DP-15 differential Validyne pressure sensor
through two tubes. The pressure-sensor diaphragm used in this
transducer has a full range of 0–3.5 kPa. The range of pressure
measurements during testing is 0–2.1 kPa. The output signal from
the pressure sensor is processed using a Celesco Model No.
CD10D Carrier Demodulator, which produces a voltage output
that is proportional to pressure. The voltage is measured by a
Keithley 131 Digital Multimeter.

A type-T thermocouple made by Omega Engineering Inc. �Part
No. TT-T-36-SLE� is used in several experiments to determine the
temperature rise through the impeller. Figure 2 shows that the
thermocouple is positioned next to the sidewall of the volute,
about 2 mm from the outer surface of the shaft. The signal from
the thermocouple is measured by an HP 3497A data acquisition
control unit that electronically compensates for a reference volt-
age level at 0 °C. Temperature measurements indicate that the
water temperature increases 1–2 °C while traveling through the
impeller for rotational speeds of 1000–15,300 rpm. Because of the
small range in temperature rise, the condition of constant fluid
properties is a good assumption for the water employed as the
working fluid.

Pump assembly starts by connecting the impeller shaft to the
coupling shaft on the motor. The bottom housing is then mounted
to a plate on the face of the linear slider, and the position of the
slots is adjusted so that the bottom of the slots is flush with the top
surface of the bottom housing. The volute is positioned and se-
cured in place. The top housing is secured and tightened to mini-
mize leakage. The inlet and outlet tubes are then connected to the
top housing. After assembly and positioning of the impeller shaft
and housing, all the air is bled from the system using a syringe
attached to the end of the inlet tubing. This includes the inlet
channel, outlet channel, and tubing to and from the pressure sen-
sors. After these steps are completed, testing is comprised of the
following procedures: �i� The system is flushed to ensure there are
no air bubbles or trapped particulates in the pumping chamber; �ii�
the pump motor is activated and adjusted to produce the desired
speed; �iii� the pump then continues to operate at constant speed
until steady state is reached, which usually requires 20–30 s, and
�iv� the timer is started, and water from the outlet tubing is col-
lected. Output signals related to shaft rotational speed, motor cur-
rent, pressure rise, and volumetric flow rate are then collected.
The volumetric flow rate is determined by dividing the amount of
water collected by the collection time. The motor torque is deter-
mined by multiplying the motor current obtained from the motor
controller by the torque constant of the motor. All data are re-
corded, and then entered and processed using a Dell Latitude lap-
top computer with a 1.15 GHz Pentium III processor, 256 MB
RAM, with a Microsoft Windows XP Professional operating sys-
tem, and Microsoft Excel XP software.

Experimental Uncertainty Analysis
A first-order uncertainty analysis is performed using constant-

odds combination method, based on a 95% confidence level as
described by Moffat �40�. Table 1 presents uncertainties associ-
ated with experimental data. The uncertainty is greatest at low

rotational speed, and pressures, due to the small signal to uncer-
tainty ratios. The uncertainty decreases significantly as the rota-
tional speed and pressure increase.

Results and Discussion
The experimental results are presented in three sections. The

first section discusses head and flow-rate variations for the radial
two-, four-, and six-blade; backward-curved four-blade; and
forward-curved four-blade impeller configurations for a constant
rotational speed. The second section discusses the performance
characteristics of the radial six-blade and the backward-curved
four-blade impellers over a range of rotational speeds. Here, each
impeller design is tested using outlet tubing diameters of 0.254,
0.508, 1.397, and 4.5 mm of the same length or by partially clos-
ing a valve located at the exit of the outlet tubing with a 1.397
mm i.d. The third section discusses the slip factor and hydraulic
efficiency of all the rotary shaft pump �RSP� impellers.

Trends for Different Impeller Designs. The variations of ide-
alized nondimensional head with nondimensional volumetric flow
rate for macroscale pumps with different impeller blade configu-
rations are shown in Fig. 6. Figure 8 shows actual nondimensional
head with nondimensional flow rate for different RSP impeller
designs, all for an impeller rotational speed of 10,710 rpm. To
obtain the data presented in Fig. 8, the flow is throttled in the
rotary shaft pump experiments by changing the inside diameter of
the outlet tubing, or by partially closing a valve located at the exit
of the outlet tubing with a 1.397 mm inner diameter. All outlet
tubing is a constant length of 89 mm. The flow circuit determines
the head requirements for a given flow rate through the tubing and
pump and can be determined using the Darcy friction factor and

Table 1 Uncertainties associated with experimental data

Variable

Percent
uncertainty
at 2640 rpm

Percent
uncertainty
at 7920 rpm

Percent
uncertainty at
15,300 rpm

Hth
5 2.5 2

Hact
15 3 1

�H
15 3 2

Q 2 2 2
T 10 5 2

Fig. 8 Variation of nondimensional pumping head with nondi-
mensional volumetric data for different impeller designs, where
each data set is obtained at a constant impeller rotational rate
of 10,710 rpm
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minor loss correlations for expansions and contractions �33�. By
decreasing the outlet tubing diameter, with constant length, the
flow resistance out of the pump is changed, which changes the
pressure rise and flow rate for a constant rotational speed. This
arrangement is thus used to provide information on the perfor-
mance of the rotary shaft pump over a range of rotational speeds,
flow rates, and pressure rises.

For each impeller configuration �operating at constant impeller
rotational speed�, Fig. 8 shows that increasing the exit tube diam-
eter, or more fully opening the exit valve, gives a higher volumet-
ric flow rate through the pump, which, for the impellers tested,
gives lower magnitudes of nondimensional head for flow rates
greater than 5 ml/min. Qualitative trends of Fig. 8 data for each
impeller configuration �at constant impeller rotational speed� are
similar for Q	5 ml/min, or �	0.014. Here, different data sets
have similar slopes, sometimes with different ranges of pump
head. At lower volumetric flow rates, data sets for different im-
peller configurations sometimes show completely different slopes,
as well as different quantitative trends. Overall, data trends shown
in Fig. 8 are similar to ones also observed at impeller rotational
speeds of 1530 and 15,300 rpm.

Pumping head magnitudes produced by the impeller generally
decrease as the flow rate is increased �as outlet tubing diameter
increases� for a constant rotational speed. For the backward-
curved four-blade impeller, one contributor for the head reduction
at higher flow rates is the reduction in Euler work due to the
increasing relative velocity at the exit of the impeller. For the
forward-curved four-blade impeller, the Euler work should in-
crease with increased flow rate, and therefour the lower head gen-
eration at higher flow rates suggests much higher flow losses com-
pared to the backward-curved impeller. Note that for a volumetric
flow rate of Q=10 ml/min=1.66�10−7 m3/s, the average fluid
velocity in the 1.168 mm bored hole of the RSP impeller is
0.156 m/s. The head reduction at higher flow rates is also associ-
ated with a decrease of hydraulic efficiency, which is related to
overall impeller behavior, and to increased hydrodynamic losses
as flow rate increases. This is discussed further later in the paper.

Performance Characteristics of Pumps with Backward-
Curved Four-Blade and Radial Six-Blade Impellers. Figures
9�a� and 9�b� show the non-dimensional variation of actual head
with flow rate for the radial six-blade impeller and for the back-
ward curved four-blade impeller, respectively, for different rota-
tional speeds. The flow rate for each rotational speed is varied by
using outlet tubing with inner diameters of 0.254, 0.508, 1.397,
and 4.5 mm of the same length or by partially closing a valve
located at the exit of the outlet tubing with a 1.397 mm I.D. As the
rotational speed is increased, the dimensional head and flow rate
also increase for each configuration. Note that the nondimensional
�-�act data curves for the different impeller speeds tested are
similar.

From Figs. 9�a� and 9�b�, the maximum nondimensional flow
rate obtained for both impeller configurations is about �=0.127,
or Q=64.9 ml/min at a rotational speed of 15,300 rpm. This
maximum flow rate is obtained with an outlet tubing inner diam-
eter of 4.5 mm. The maximum nondimensional head obtained at a
rotational speed of 15,300 rpm is about �act=0.577, or Hact
=2.1 kPa for both impeller configurations. Note that greater pres-
sure rises and greater flow rates are present at higher rotational
speeds.

The data given in Fig. 9 are given for the backward curved
four-blade impeller and the radial six-blade impeller because these
produce the highest pressure rise at a particular flow rate and also
have the highest hydraulic efficiency at a particular volumetric
flow rate. Of the pumps tested, the best millimeter-scale pump has
backward-curved blades, and 4–6 impeller blades.

Figures 10 and 11 show the dimensional actual head and flow
rate as they depend on rotational speed for the radial six-blade
impeller and for the backward curved four-blade impeller, respec-

tively. The data shown in Figs. 10 and 11 are obtained using
rotational speeds from 1530 to 15,300 rpm and outlet tubing inner
diameters of 0.0254, 0.508, and 1.397 mm of the same length.
From the data presented, it is apparent that the flow rate can be
changed easily by adjusting the rotational speed of the impeller
and by changing outlet tubing diameter and length.

Hydraulic Efficiency and Slip Factor for All Impeller
Configurations. Figure 12 shows hydraulic efficiency and nondi-
mensional flow-rate variations for all the tested impellers. The
data shown in Fig. 12 is a combination of all experimental data
taken at rotational speeds between 1530 and 15,300 rpm and with
the different outlet tubing diameters. Note that all hydraulic effi-
ciency values are determined without accounting for any inlet
swirl. Table 2 shows the slip factor magnitudes for the different
impeller configurations. Note that the slip factor correlation from
Eq. �9� gives values that are independent of flow rate and rota-
tional speed. In Fig. 12, overall, the hydraulic efficiency decreases
as flow rate increases. This is tied to impeller performance at
higher flow rates. Note that greater viscous stresses are also
present at higher flow rates because of larger velocity gradients.
The maximum value of hydraulic efficiency is 0.87, which is ob-
tained with the backward-curved four-blade impeller at a flow rate
of Q=0.12 ml/min, or �=2.35�10−4. The average magnitude of
�H decreases by 57% for the backward-curved four-blade impeller

Fig. 9 Nondimensional pressure-rise and flow-rate data for
the „a… radial six-blade and „b… backward-curved four-blade im-
pellers for different rotational speeds. Flow rate is varied by
using outlet tubing of different inner diameter from 0.254 to 4.5
mm, or by partially closing a valve on the end of the 1.397 mm
outlet tubing.
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as the flow rate increases to Q=34.5 ml/min or �=0.068. There
is also a difference of 22% in the average magnitude of �H be-
tween the backward-curved and forward-curved four-blade impel-
lers at flow rates of 
5 ml/min. This implies that both the impel-
ler design and flow rate are significant, but the flow rate has a
more significant effect on the performance of the rotary shaft
pump. Also, note that the motor torque increases from 2.7 to
4.5 mN-m as the rotational speed increases from 1530 to 15,300
rpm for the backward-curved four-blade impeller. Similar changes
of motor torque are observed for all impeller blades tested for the
same rotational speeds.

The most efficient impeller configurations are the radial six-
blade and backward-curved four-blade impellers. The impeller
configurations with the lowest hydraulic efficiency are the radial
two-blade and forward-curved four-blade impellers.

Summary and Conclusions
A novel millimeter-scale rotary micropump called the rotary

shaft pump �RSP� is developed, characterized, and tested. The top
and bottom of the impeller blades of this device are integral parts
of the rotary shaft, which serves as the inlet duct passage to the
impeller. This arrangement increases reliability with well-
supported impeller blades and reduces risk of blade damage due to
contacting the top pump housing. The device is mechanically ro-
bust and easy to manufacture. The hollow interior of the RSP

transfers momentum to the passing fluid, which may aid the
pumping process by inducing circumferential momentum at the
inlets of the impeller blades.

Fig. 10 Pressure-rise and flow-rate data for different rotational
speeds for the radial six-blade impeller. Data are taken with
impeller rotational speeds from 1530 to 15,300 rpm.

Fig. 11 Pressure-rise and flow-rate data for different rotational
speeds for the backward-curved four-blade impeller. Data are
taken with impeller rotational speeds from 1530 to 15,300 rpm.

Fig. 12 Hydraulic efficiency for the different impeller configu-
rations as dependent nondimensional volumetric flow rate.
Data are taken with impeller rotational speeds from 1530 to
15,300 rpm.

758 / Vol. 127, JULY 2005 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The tested pump impeller is 2.38 mm in diameter, the height of
the impeller blades is 380 �m, and the impeller speed varies from
1530 to 15,300 rpm. The bored hole in the impeller shaft is 1.168
mm in diameter, as seen in Fig. 1. Similar pressure versus flow
rate slope characteristics for all impeller designs, and the differ-
ences relative to macroscale arrangements, provide evidence that
the trends of these data are influenced by viscous forces, as well
as by the impeller design �backward-curved, forward-curved, ra-
dial blades�. Centrifugal-inertial forces also play an important
role, since greater centrifugal forces are obtained at higher impel-
ler rotational speeds, which generally increase pumping head
magnitudes. By keeping the rotational speed constant and chang-
ing the flow rate by varying the outlet tube diameter and outlet
valve, the pumping head is shown to decrease with increased flow
rate. Such behavior is associated with overall impeller behavior
and with increased hydrodynamic losses as flow rate increases.

The hydraulic efficiency changes by as much as 22% between
different impeller configurations �i.e., the radial two-blade and
backward curved four-blade impeller designs� for the same flow
rate. The hydraulic efficiency for all impeller configurations de-
creases significantly for flow rates of 	5 ml/min, or for �
	0.014, due to the increased hydrodynamic losses. The highest
hydraulic efficiency of 0.87 is produced by the backward-curved
four-blade impeller with a rotational speed of 15,300 rpm and a
flow rate of 0.12 ml/min, or a � value of 2.35�10−4.

The performance of the RSP shows that pressure rise and flow
rate increase for a constant outlet tubing diameter as rotational
speed increases. The present millimeter-scale RSP produces flow
rates up to 64.9 ml/min. Figure 13 shows the maximum flow rate
for the RSP relative to the flow rate of several other different
micropumps �2–13,17–27�. The typical size is defined as the
membrane diameter, or the pumping chamber width. The flow rate
of the RSP is larger than many other micropumps of similar size,
as seen in Fig. 13, which generally reach flow rates only up to
about 16 ml/min. Figure 14 shows the pressure and flow rate of
the backward-curved four-blade impeller at different rotational
speeds relative to the maximum flow rate and maximum pressure

rise of other micropumps �2–9,11,13,17–20,23–26�. Larger-scale
versions of the rotary shaft pump may be ideal for applications in
blood pumping, and ventricle assist devices �28–30�, chemical
analysis systems, drug delivery, and electronics cooling. Smaller-
scale versions are ideally suited for chemical analysis systems,
�-TAS, and drug delivery.
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Nomenclature
Cul � tangential component of the absolute fluid ve-

locity at the impeller blade inlet
Cu2 � tangential component of the absolute fluid ve-

locity at the impeller blade outlet
Cu2,i � ideal value of tangential component of the ab-

solute fluid velocity at the impeller blade inlet
D � inner diameter of tubing

D2 � outer diameter of impeller
g � gravitational constant
h � height of blades
H � pumping head

Hth � theoretical head or Euler head
Hact � actual measured head between pump inlet and

outlet
n � number of impeller blades

�P � pressure rise across pump measured between
pump inlet and outlet

Q � volumetric flow rate
T � motor torque

U1 � blade speed at the impeller inlet
U2 � blade speed at the impeller outlet
v�s � slip velocity

Greek Symbols
� � impeller inlet swirl factor
� � blade angle

�1 � inlet blade angle measured relative to the tan-
gential direction

�2 � outlet blade angle measured relative to the tan-
gential direction

�H � hydraulic efficiency
 � density
� � slip factor

Table 2 Slip factors obtained from Eqs. „5… and „9… for various
impellers

Impeller configuration Slip factor ���

Radial 2-blade impeller 0.384
Radial 4-blade impeller 0.621
Radial 6-blade impeller 0.715
Backward-curved 4-blade impeller 0.622
Forward-curved 4-blade impeller 0.638

Fig. 13 Flow rate and typical size for various micropumps.
Typical size is defined by the impeller diameter, diaphragm di-
ameter, or pumping channel width †2–13,17–27‡.

Fig. 14 Pressure-rise and flow-rate data for various micro-
pumps. For all points other than the RSP, the data corresponds
to the maximum flow rate and maximum pressure. The data
shown for the RSP is for the backward-curved four-blade im-
peller †2–9,11,13,17–20,23–26‡.
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� � nondimensional volumetric flow rate,
�=4Q /�D2

2U2
� � nondimensional pump head, �=Hg /U2

2

�act � nondimensional actual measured pump head
between pump and inlet and outlet

�th � non-dimensional theoretical pump head or Eu-
ler head
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Experimental Investigation of
Cavity-Induced Acoustic
Oscillations in Confined
Supersonic Flow
The focus of the present work is the acoustic oscillations exhibited by confined supersonic
flow past a rectangular cavity of varying length-to-depth �L /D� ratio, with a view to
identify optimal dimensions for application in scramjet combustors. Experiments were
conducted to study the acoustic oscillations induced by supersonic flow at a Mach num-
ber of 1.5 past a rectangular cavity of variable dimensions mounted on one wall of a
rectangular duct. The effect of L /D ratio of the cavity on the dominant acoustic modes
registered on the wall of the duct opposite to the cavity is investigated. The range of L /D
ratio varied is 0.25–6.25. The dominant acoustic modes and the amplitudes are observed
to be quite sensitive to L /D ratio in the above range. Shifts in the dominant acoustic
modes are observed predominantly for L /D�0.94 and L /D�1.5. The variation of the
Strouhal number with L /D ratio indicates a transition in the modal content in the 0.94
�L /D�1.5 range. Further shifts in the dominant frequencies are observed in the 1.5
�L /D�5.0 range. Peak amplitudes occur at L /D ratios of around 0.75 and 2.25, with
over twice the magnitude at the former than at the latter condition. Time-averaged
schlieren visualization indicates the presence of quasi-steady shocks at about 0.75 the
length of the cavity for L /D�1 as opposed to being nearly at the trailing edge for higher
L /D ratio. Instantaneous phase-locked schlieren images show the quasi-steady shocks
are due to the movement of vortices and compression waves along the length of the
cavity. It is also observed that the number of vortices in the shear layer roll up along the
length of the cavity increases corresponding to the mode shifts for cavities with L /D
�1. Such distinct streamwise oscillations are also observed for cavities with L /D�1,
when the length is appreciable. The presence of higher modes in the acoustic oscillations
is correlated with shocks produced at the lip of the cavity at a different frequency than the
compression waves inside the cavity. �DOI: 10.1115/1.1949642�
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Introduction

Supersonic flow past cavities is receiving a lot of attention in
recent times in the context of the potential for enhancement of
fuel-air mixing and flame-holding in supersonic combustion ram-
jets �1–4�. Of particular interest is the unsteadiness in the flow
field and the consequent emission of acoustic oscillations that
could enhance the fuel-air mixing process. The focus of the
present study is the choice of dimensions of a rectangular cavity
that would produce acoustic oscillations at large amplitude levels
for this purpose, in a confined supersonic flow. To this end, the
length-to-depth �L /D� ratio of the cavity has to be nearly continu-
ously varied on either side of unity. Furthermore, the phenomena
occurring within the cavity has to be understood clearly in con-
junction with their effect on the flow field outside the cavity, as
the L /D ratio transitions across unity, by means of instantaneous
time-resolved flow visualization within and outside the cavity.

Several studies have been reported in the past on flow past
cavities in the context of the unsteady loading in weapons bays

and wheel wells on aircraft wing surfaces. While these studies
focus on flow past cavities as an external flow problem as opposed
to the internal flow that is of present interest, the flow phenomena
in the vicinity of the cavity are of great relevance here. The pres-
sure oscillations induced due to flow past a cavity falls in the
general class of problems relating to coherent oscillations of shear
layers impinging on a surface, broadly termed as “impinging shear
layer instability” �5�. Rockwell and Naudauscher �6� have pre-
sented a review on the nature of the oscillations induced by flow
past cavities. Of importance to the present work is their classifi-
cation of fluid dynamic and fluid-resonant mechanisms of cavity
oscillations, both of which could coexist under certain geometrical
conditions, such as when the L /D ratio of the cavity is not too
much greater than unity. Rossiter �7� has made a distinction be-
tween these cavities based on the predominance between random
and periodic components of the observed oscillations in the
subsonic-to-transonic regime. He has given an empirical formula
for the prediction of the different modes as a function of the flow
Mach number. Heller et al. �8� have noted, based on whether the
fluid-resonant type of cavity oscillations are transverse or longitu-
dinal in nature, that the L /D ratio of the cavity dimensions could
be less than unity �deep cavities� for the establishment of trans-
verse waves and greater than unity �shallow cavities� for longitu-
dinal waves. This is in contrast to Rossiter’s terminology, wherein
cavities with L /D�4 are termed deep. They have also modified
the Rossiter’s formula recognizing the disparity in the speeds of
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sound in the free stream and within the cavity. However, neither
formula contains an explicit dependence on the depth of the cav-
ity.

Hankey and Shang �9� have schematically shown the time-
resolved events relating to the oscillation of the oblique shock
system in the supersonic flow field outside the cavity and its as-
sociation with the compression waves propagating back and forth
along the length of shallow cavities. Zhang and Edwards �10,11�
and Zhang �12� have reported experimental and computational
works in the free-stream Mach number range of 1.5–2.5 for cavi-
ties with L /D�1, including tandem cavity configurations. They
have showed that amplitude of oscillations attains a peak value for
an optimum L /D value of around 2.0. The shear layer dynamics at
the lip of the cavity and the pressure oscillations inside and in the
outer vicinity of the cavity were elucidated by means of spark-
schlieren or interferometric images, and computed vorticity distri-
bution.

Several investigators have worked in the low subsonic Mach
number range of the free stream, with some of them spanning a
wide range of L /D ratios from geometrically deep cavities to shal-
low ones �13–15�. One of the primary interests of these studies is
to study the effect of the nature of the boundary layer of free-
stream flow approaching the cavity leading edge, beside that of
the free-stream Mach number in the low range. Some notable
theoretical works that have attempted to predict the dominant fre-
quencies include that of Plumblee et al. �16�, Covert �17�, Bilanin
and Covert �18�, and Tam �19�. Recently, Arunajatesan and Sinha
�20� have reported a hybrid computational approach combining
large-eddy simulation and the Reynolds-averaged Navier-Stokes
equations to predict the amplitudes of oscillations excited by flow
past cavities. Anavaradham et al. �21� have presented experimen-
tal and computational results for flow past cavities and shown
good comparison between predicted and measured dominant fre-
quencies in the transition regime of the cavity flow as the L /D
ratio changes from shallow to square to deep, for a given Mach
number. Shieh and Morris �22� have computationally investigated
the difference between two- and three-dimensional cavities, and
have confirmed earlier observations obtained at low flow speeds
that a wakelike behavior is exhibited in two-dimensional cavities,
whereas oscillations in a three-dimensional cavity are similar to
shear-layer oscillations.

In spite of a large of number of works relating to flow past
cavities, a few issues are yet to be addressed clearly. First, the
transition between the behavior of shallow and deep cavities does
not appear to be clearly demarcated as indicated by Rossiter �7� or
Heller et al. �8�. In particular, there are very few works that have
focused on supersonic flow past cavities with L /D�1. Cavities
that are apparently deep �i.e., with L /D�1� could still exhibit
longitudinal oscillations of a fluid dynamic nature as opposed to
those of an acoustic nature near the cavity lip, if their length is
appreciably larger than the length scale of vortex roll-up. Further-
more, it is likely that deep cavities would produce much higher
amplitudes of oscillations than shallow ones �6�, but this has not
been investigated under supersonic free-stream conditions thus
far. Second, although several works indicate the prevalence of
different dominant modes of the cavity oscillations, the shifts be-
tween the dominant modes and the conditions under which they
occur have not received much attention. The dynamics of the
shear layer at the lip of the cavity and the pressure oscillations
within and the shock oscillations outside the cavity in association
with the mode shifts are also not clearly understood. Instantaneous
visualization of the flow field is needed to understand the effect of
the L /D ratio of the cavities on the shifts in the dominant modes
and the different cavity flow regimes. This has been investigated
by means of phase-locked instantaneous schlieren visualization in
the present work. Third, the nature and amplitude of oscillations
sensed in the outer flow field, particularly at the wall opposite the
cavity in the duct confining the outer flow, and its sensitivity to
the L /D ratio of the cavity is of interest in the present study. This

is important in the context of the propulsion applications men-
tioned earlier, wherein the oscillations are considered conducive
to enhance the mixing of fuel and air in the combustor. The con-
finement of the outer supersonic flow could cause reflection of
shocks originating from the leading edge of the cavity, and the
reflected shocks could, in turn, interfere with the shear layer at the
cavity lip and its dynamics, depending on the height of the outer
flow duct and the length of the cavity, which could affect the
nature of the oscillations sensed at the opposite wall.

The present work intends to address some of these issues, at
least partially. The dimensions of the cavity are closely varied in
order to resolve the mode shifts that occur during transition be-
tween transverse and longitudinal oscillations, as the cavity geom-
etry changes from deep to shallow. A significant limitation in the
scope of the present work is that it is performed at a single Mach
number of the free-stream flow. The effect of the nature of the
boundary layer approaching the cavity is also not investigated in
the present work, although the conditions are maintained such that
the boundary layer characteristics are unaltered throughout the
study. Even though the cavity runs all along the width of the test
section in the present work, the cross-sectional dimensions of the
test section are comparable to the length and depth of the cavity,
thus the flow field is expected to be three-dimensional, as con-
firmed by the shear-layer-like oscillations observed here, similar
to that reported by Shieh and Morris �22�.

Experimental Details
The experimental test facility has provision to supply com-

pressed air at a maximum stagnation pressure of 10 bar from three
reservoirs with a combined capacity of 36 m3. The stagnation
pressure of the flow is maintained at 3.6 bar absolute, and the
stagnation temperature is the ambient temperature in the present
experiments. The air outlet from the reservoir is connected to a
settling chamber with a circular-to-rectangular transition duct. A
nozzle is attached to the rectangular end of the transition duct. The
top and bottom surfaces of the nozzle are converging and diverg-
ing, and the side surfaces are parallel to each other. The area ratio
of the nozzle is designed to yield a flow Mach number of 1.5. This
is verified by means of a Pitot survey across the flow cross section
at the nozzle exit to be within a Mach number band of ±0.01. The
divergent portion of the C-D nozzle is expanded to a rectangular
cross section of 40 mm height and 30 mm width, which is the
same as the test-section cross section. The length of the test sec-
tion is 180 mm. Rectangular cavities of different dimensions are
located along the bottom wall of the test section, 30 mm down-
stream of the nozzle exit, by a suitable combination of movable
and fixed blocks. The cavity dimensions tested in the present
study are summarized in Table 1. The length is varied in steps of
5 or 10 mm, but the depth is varied more closely, in steps of 1 or
2 mm, at a given length. The width of the cavity �W=30 mm�
spans the entire test section. Figure 1 shows the schematic of the
C-D nozzle and the test section. The boundary layer is taken to
grow from the nozzle throat, and the Reynolds number of the
boundary layer approaching the cavity leading edge is calculated

Table 1 Cavity dimensions tested in the study

S.
No.

Length
L �mm�

Depth
D �mm� L /D

1 10 10–40 0.25−1.00
2 15 10–40 0.38−1.50
3 20 10–40 0.50−2.00
4 25 8–34 0.74−3.13
5 30 9–38 0.79−3.33
6 35 8–70 0.50−4.38
7 40 8–92 0.44−5.00
8 50 8–78 0.64−6.25
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to be 2.052�106. The boundary layer thickness at that location is
estimated to be 4 mm, based on the assumption of the 1/7 power
law for the streamwise velocity distribution, which has been suc-
cessfully adopted in computationally predicting the acoustic re-
sults of the present study for one length of the cavity in the com-
panion work of Anavardham et al. �21�.

The test section is made using Plexiglas walls at the top and
bottom surfaces and optically clean glass as sidewalls, for the
purpose of acoustic characterization of the cavities and flow visu-
alization. On the top wall of the test section, 12 transducer ports
are provided to perform acoustic pressure measurements. The first
port at the top wall is located 20 mm downstream of the nozzle
exit and is 10 mm upstream of the leading edge of the cavity. The
distance between the transducer ports is 10 mm. The measure-
ments are performed on the wall opposite to the cavity, to examine
the acoustic field radiated by the cavity into the test section, from
the standpoint of the scramjet propulsion applications. Measure-
ments are also performed in a few cases at the leading edge and
the bottom walls of the cavity.

Piezoelectric pressure transducers �PCB Piezotronics make,
Model No. 112A22, with a sensitivity of 100 mV/psi� are used to
perform the acoustic pressure measurements. The signal from the
transducer is conditioned using a signal conditioner and fed to a
computer through a 12-bit analog-to-digital �A/D� data acquisition
board, which can sense signals up to a maximum peak-to-peak
voltage level of 5 V. Therefore, the maximum uncertainty in the
measurement of the acoustic pressure amplitude is 6 Pa. Since the
dominant frequency to be measured is estimated as in the 4–25
kHz range, the sampling frequency is set at 100 kHz. The number
of samples taken is 32,768 �=27�. Fast Fourier transform �FFT� is
performed on the stored signal with a frequency resolution of 3
Hz. The output of the FFT is used to determine the amplitude of
the dominant frequency and its amplitude. The power spectra have
been averaged by combining four 3 Hz bins to make the spectra
less noisy and obtain consistent data. All the experimental test
runs are repeated three times. The variations in the dominant fre-
quencies during the repeated tests are within 20 Hz in the 4–25
kHz range, and those in the amplitudes of the dominant frequen-
cies are �5% under identical experimental run conditions.

Time-averaged and instantaneous schlieren visualization is per-
formed in the vicinity of the cavity. The field of view in the
time-averaged images is larger than in the instantaneous ones. For
the time-averaged schlieren, a 150 W halogen lamp is used as a
constant point light source. A Pentax SLR film camera with an
exposure time of 1 s is used to obtain the time-averaged images.
For the instantaneous imaging, a strobe light that gives a spark for
about 9 ns duration is used as the source of illumination. The
instantaneous images are acquired with a high-speed digital CCD
camera �HiSIS 2000 model manufactured by KSV Instruments,
Finland� at a framing rate of 2250 frames per second.

When oscillations of discrete frequencies at appreciable ampli-
tudes are observed, the instantaneous schlieren images are phase
locked with respect to the acoustic oscillations, in the following
manner. A pulse is obtained from the strobe light at every instant
when the spark is emitted. These pulses are acquired along with
the pressure transducer signal by the A/D data acquisition system,
which also simultaneously triggers the image acquisition by the
high-speed camera. The time instant in the acoustic cycle when an
image is obtained is inferred by comparing the acoustic data with
the pulses from the strobe light.

Results and Discussion

Acoustic Pressure Measurements. Strong oscillations are ob-
served mainly between the fifth and tenth ports on the wall oppo-
site to the cavity at a distance of 30–80 mm downstream of the
cavity leading edge, depending on the length and depth of the
cavity. The maximum amplitudes of the dominant frequencies are
observed at the seventh and eighth ports, 50–60 mm downstream
of the cavity leading edge, for most of the cavities tested. These
locations fall just downstream of the Mach wedge originating
from the cavity leading edge and intersecting the opposite wall.
Higher modes are also present at the ports where the dominant
frequency is observed.

Discrete dominant frequencies with quite high amplitudes are
generally observed for most cavity dimensions, but a broadband
spectrum of relatively low amplitudes is observed in some cases,
such as when the L /D ratio is either large ��5� or for �0.94
�L /D�1.5. Typical spectra for the different cases are shown in
Fig. 2. These spectra are recorded at the seventh port, at a distance
of 50 mm downstream of the cavity leading on the opposite wall.
Despite the low amplitudes, a few discrete dominant frequencies
are identifiable in these cases, as opposed to the broadband noise
in the 50–100 Pa range �128–134 dB� measured for the flow with-
out any cavity. The low amplitudes at the dominant frequencies
for cavities with L /D�5 is due to diminishing of the fluid dy-
namic feedback mechanism at the free-stream Mach number of
1.5 considered here. It can be seen from the flow visualization
images shown later that at this Mach number, the length scale of
the vortex roll-up at the leading edge of the cavity is quite small,
so that appreciable fluid dynamic feedback does not occur beyond
L /D�5. The range of 0.94�L /D�1.5 is considered in greater
detail later.

It is important to know whether any difference exists in the
frequency excited within the cavity and that measured at the wall
of the test section opposite to the cavity. Simultaneous acoustic
pressure measurements were performed inside of the cavity on the
leading edge wall and at the top wall of the test section. Figure 3
shows the spectra corresponding to the two signals. It can be
observed that the same dominant frequencies exist at both the
locations. It is also observed that, in most of the cases, the ampli-
tudes inside the cavity are more than those at the opposite wall.
The dominant frequencies are the same due to the source of the
disturbance being the same, that is, the shear layer oscillations.

The variation of the dominant frequency as a function of depth
at constant length of the cavity is shown in Fig. 4. The measure-
ments are performed at the eighth port at a distance of 60 mm
downstream of the cavity leading edge on the opposite wall in
these experiments. It can be seen that the dominant frequencies

Fig. 1 Schematic of the test section
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are higher for smaller lengths. Jumps in the dominant frequencies
are observed at different depths for the different lengths of the
cavity tested. To highlight this, the variation in frequency with
depth for one set of cavities with 40 mm length is shown in Fig. 5
for clarity. The amplitude at the dominant frequency is also plot-
ted alongside as a function of depth in Fig. 5.

No single dominant frequency with significant amplitude is ob-
served up to a depth of 8 mm for the length of 40 mm �L /D
�5�. It is observed in Fig. 5 that the dominant frequency jumps
abruptly at depths of 12, 26, and 40 mm. Note that the depth of 40
mm corresponds to a geometrically square cavity at the length
being considered. The amplitudes continue to be low as the depth

is increased above 8 mm �L /D�5�, although a dominant fre-
quency can be identified. The amplitude rises significantly for
L /D�3.33 coinciding with the jump in the dominant frequency at
12 mm depth. The depth of 26 mm at this length forms a geo-
metrically shallow cavity �L /D=1.54�. The jump in frequencies
for L /D�1 is observed for all the cavity lengths tested, as the
depth is varied. In the ranges of depth in between the abrupt
jumps, the dominant frequency slightly decreases with increase in
depth. The amplitude variation attains a maximum in the middle
of these ranges and drops to low values at the depths correspond-
ing to the jumps in the dominant frequency. As the amplitude
corresponding to the dominant frequency decreases within the
range of depth between the jumps, the next dominant frequency to
which the jump occurs increases in amplitude simultaneously. Be-

Fig. 2 Typical spectra of acoustic oscillations for different
cavity dimensions

Fig. 3 Spectra of acoustic signals measured „a… in the cavity
and „b… at the wall of the test section opposite the cavity, for a
cavity with L=30 mm and D=15 mm„L /D=2.0…

Fig. 4 Effect of cavity depth on dominant frequency for vari-
ous lengths
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yond the jump in the dominant frequency at a depth of 40 mm
�L /D=1�, there are no further jumps over a large range of depth,
signaling a transition in the nature of oscillations between shallow
and deep cavities.

The variation in the Strouhal number based on both the length
and the depth of the cavity is examined as a function of the L /D
ratio of the cavity in Fig. 6. The observed dominant acoustic fre-
quency and the average inlet free stream velocity are used in
determining the Strouhal number. It can be seen that all the data
for different lengths of the cavity fall on a single set of curves
when plotted in this manner. Jumps are observed in the Strouhal
number based on both the length and depth of the cavity at L /D
ratios of around 0.94 and 1.5. Further, the Strouhal number exhib-

its multiple values and jumps from one value to the other for
L /D�1, but most of the data fall on to an approximately constant
Strouhal number for L /D�1.5–2. The constant value is around
0.45–0.5 when the Strouhal number is based on the cavity length,
whereas it is around 0.2 when based on the depth. It is well known
that a constant value of the Strouhal number is associated with
fluid dynamic oscillations, such as vortex shedding in a recircula-
tion zone. It is evident from the above results that geometrically
shallow cavities with L /D�1.5–2 exhibit oscillations that are
fluid dynamic in nature, accompanied by the shifts in the domi-
nant frequencies observed for these cavities in Figs. 4 and 5. On
the other hand, the trends in the Strouhal numbers based on the
cavity length and depth with L /D ratio indicate that a nearly con-
stant frequency is excited in the case of geometrically deep cavi-
ties �L /D�1�, dictated by considerations of transverse natural
acoustic modes of the cavity along its depth. This is observed in
Figs. 4 and 5, as the depth increases beyond the length of the
cavity. The multiple values and jumps in the Strouhal numbers in
Fig. 6 for the deep cavities indicates that a single dominant acous-
tic mode is prevalent in the deep cavities without undergoing any
jumps as the depth is varied, but the mode could be different for
different lengths of the cavity �Fig. 4�.

The data presented in Fig. 6 is extended by considering other
prevalent modes besides the dominant modes. The Strouhal num-
ber based on the cavity length and the frequencies of the different
modes is plotted versus the L /D ratio of the cavity in Fig. 7. The
data in Fig. 7 is restricted to a cavity length of 50 mm for the sake
of clarity. The modes are counted from the lowest frequency ex-
cited. The Rossiter’s formula modified by Heller et al. �8� is also
calculated for M =1.5 and plotted in Fig. 7. Note that both the
original Rossiter’s formula as well as the modified one used here
do not contain any explicit dependence on the L /D ratio of the
cavity. Hence, the calculated Rossiter modes are parallel to the
abscissa in Fig. 7. Furthermore, the data obtained by Heller et al.
�8� for M =1.5 at three L /D ratios, all greater than unity, are also
plotted in Fig. 7 for comparison. It can be seen that the data
obtained in the present work over a wide range of L /D ratio
compares very well with the calculated Rossiter modes and the
data of Heller et al. �8� obtained at M =1.5. The comparison is
mainly valid for shallow cavities where data from Heller et al. �8�
are available, and for which, Rossiter �7� derived the phenomeno-
logical formula, later modified by Heller et al. �8�. For deep cavi-
ties, only three modes are seen to be excited as opposed to as
many as nine modes distinctly observed in the case of the shallow
cavities. The third mode is the most dominant with the deep cavi-
ties, but with the shallow ones, it is the second. However, the third
and fourth modes are also relatively significant in the latter case.

Fig. 5 Effect of cavity depth on frequency and amplitude for
cavities with L=40 mm

Fig. 6 Effect of L /D ratio on Strouhal number based on „a…
length and „b… depth of the cavity

Fig. 7 Effect of the cavity L /D ratio on the Strouhal number
based on the cavity length and the various discrete frequencies
excited for cavities of 50 mm length. Data from Heller et al. †7‡
taken for L /D=4.0, 5.7, and 7.0 at free-stream Mach number 1.5.
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The multiple modes and the jump in the dominant mode from one
to the other are due to the dynamics of vortex shedding, splitting,
pairing, or merging, and to its interaction with the pressure waves
along the length of the cavity, particularly, when the cavity is
shallow. Such dynamics is also observed in the case of deep cavi-
ties with large lengths, as will be discussed in the next subsection,
but they are not dominant when compared to the fluid-resonant
mechanism noted earlier.

The difference in the prevalence of a large number of modes for
shallow cavities versus fewer modes for deep cavities can be fur-
ther discerned by looking at the time-series acoustic pressure sig-
nals and their corresponding spectra for two cases in Fig. 8, both
with a cavity of 50 mm length, but one with a depth of 22 mm
�shallow, L /D=2.27� and another with a depth of 70 mm �deep,
L /D=0.71�. In the former case, all the modes of the cavity get
excited, with one among them being considerably dominant.
Some harmonic content, marked by a circle in the time series data
in Fig. 8, is observed for the shallow cavity. The higher harmonics
are excited by a shock originating at the lip of the cavity and
propagating at twice the dominant frequency and along the Mach
wedge, as observed from the instantaneous flow visualization dis-
cussed in the next subsection. In the latter case, the modes excited
are fewer, although they are integral multiples of the dominant
mode. The corresponding pressure signal versus time is smoother
when compared to that for the shallow cavity. In general, this kind
of a transition in the nature of the signal and its harmonic content
is observed at the points of frequency jumps, and the signals re-
main similar until the next frequency jump.

The effect of L /D ratio on the acoustic amplitudes at the domi-
nant frequencies is shown in Fig. 9 both in decibel and kilopascal
scales, taking into account all the conditions tested in the present
study. As the L /D ratio increases, the amplitude reaches a maxi-
mum value in the ranges of 0.5–0.8 and 2.0–2.4. Zhang and Ed-
wards �10� have reported maximum amplitudes for cavity L /D
�2.0 for a few L /D ratios greater than unity but at three Mach
numbers. But it can be seen from Fig. 9 that a maximum observed
around L /D ratio of 0.5–0.8 �i.e., deep cavities� is quite higher
than that observed with L /D�2.0–2.4 �i.e., shallow cavities�. In
the 0.94�L /D�1.5 range corresponding to the frequency shifts

referred to earlier, the amplitudes registered are very low. This
range corresponds to a coexistence of transverse and longitudinal
modes as shown by Zhang �12�, both of which do not register any
significant amplitude levels. However, it is important to note that
the amplitudes are sensitive particularly to the length of the cav-
ity: larger cavity length excites greater amplitudes in general, even
on a decibel scale. Furthermore, this trend is observed even in the

Fig. 8 Real-time acoustic signals along with their respective acoustic spectra
for typical shallow and deep cavities

Fig. 9 Effect of L /D ratio on acoustic amplitude at the domi-
nant frequency
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case of square cavities. It can be seen from the instantaneous flow
visualization images that larger lengths allow for distinct roll up
of the shear layer separating from the cavity leading edge and
shedding of those vortices along the lip of the cavity, even when
the cavities are deep and excite predominantly transverse oscilla-
tions.

Flow Visualization. Time-averaged color schlieren imaging
was performed to visualize the mean flow field in the vicinity of
the cavity. The shock structures for a typical cavity length of 40
mm are shown in Fig. 10 �gray-scale images� for two depths of
the cavity. A shock originating from the leading edge of the cavity
is clearly visible. The shear layer is also visible at the lip of the
cavity for all dimensions, which grows in thickness from the cav-
ity leading edge to the trailing edge. A strong double-shock struc-
ture and an expansion fan originating at the trailing edge of the
cavity can also be observed. For the shallow cavity with D
=16 mm, a region of high density gradient is observed at the
corner of the bottom wall and the trailing edge wall in Fig. 10�a�.
This has been observed more clearly in instantaneous visualiza-
tion experiments, which are discussed next. This is due to the
movement of the vortical structures along the trailing edge and
along the bottom wall, following the circulation present at the
trailing edge, as described by Zhang �12�. For the deep cavity with
D=54 mm, the mean density gradients are quite low inside the
cavity. In general, this indicates that the mean static pressure
variations inside the cavity are not steep, except near the trailing
edge, �in Fig. 10�b��. In addition, relatively strong shocks are seen
originating at about 3 /4 along the length of the cavity from the
leading edge for the deep cavity. This is in contrast to the double-
shock structure observed in the case of the shallow cavity. These
shocks are due to the unsteady nature of the shear layer, as can be
seen in the instantaneous visualization presented next. This indi-
cates that the shear layer roll up is of a length scale that is shorter
than the length of the cavity considered, even in the case of the
deep cavity. For both types of cavities, the reflection of any
shocks on the top wall of the test section does not cause shock
incidence within the length of the cavity, for the dimensions con-
sidered and the test Mach number.

Instantaneous flow visualization is performed to study the un-
steady nature of the flow past cavities. As mentioned in the earlier
sections, the cavity oscillations are weak when the L /D�5 or for
0.94�L /D�1.5. As can be seen in Fig. 11�a� for the specific case
of a cavity with L=25 mm and D=16 mm�L /D=1.56� around the
above L /D range, the roll up of vortices is confined to a narrow
region along the lip of the cavity, but there is not much activity
visible inside the cavity and, correspondingly, in the main flow.
This indicates a lack of coupling between the shear-layer oscilla-
tions and the excitation of the discrete frequencies by the cavity.
For the cavity with L=40 mm and D=8 mm�L /D=5�, shown in
Fig. 11�b�, it can be seen that the shear layer at the lip of the
cavity grows and reaches very close to the bottom wall apprecia-

bly ahead of the cavity trailing edge. A movement of large-scale
vortical structures in the shear layer is observed, but the shear-
layer thickness is comparable to the depth of the cavity itself in
this case, leading to a situation approaching that of a closed cavity
wherein the shear layer separated at the cavity leading edge at-
taches to the bottom wall of the cavity rather than at the trailing
edge. A shock originating from the shear layer due to the presence
of the large-scale structures is also seen at around a third of the
length from the leading edge. But, this shock does not appear to
be related to propagation of any compression waves inside the
cavity �9�.

As opposed to the above, cavities that excite discrete oscilla-
tions exhibit distinct structures, such as a � shock due to vortex
roll up, weak shock waves associated with the unsteady shear
layer, and compression waves traveling back and forth along the
length of the cavity. Three cases of cavities with 40 mm length,
and depths of 15, 27, and 70 mm are considered here, and their
instantaneous schlieren images are phase locked with respect to
the dominant frequency �the second mode in this case� to examine
the shear layer dynamics. The first two depths correspond to shal-
low cavities, which are on either side of a jump in the dominant
acoustic frequency observed in Fig. 5; the third depth yields a
deep cavity. In the case of the cavity with the 15 mm depth, the
large-scale structures in the shear layer impinge on the trailing
edge, as can be seen in Figs. 12�a� and 12�b�. These produce
compression waves, which travel in the upstream direction. But
the compression wave seen in Fig. 12�b� is not a single wave;
rather it is a set of multiple curvilinear waves produced as a result
of the interaction with the vortices convecting at the cavity lip and
the wall at the bottom of the cavity. These waves impinge on the
shear layer at the leading edge of the cavity and alter its charac-
teristic response. This is one of the possible mechanisms of exci-
tation of multiple dominant frequencies in the case of shallow
cavities. In Figs. 12�c�–12�f�, a � shock in the free stream is ob-
served to arise from the compression waves propagating inside the
cavity. Since these compression waves propagate toward the up-
stream direction at the speed of sound, the multiple prongs of the
� shock are progressively inclined to form such a structure in
association with the compression waves.

Instantaneous schlieren images for a cavity in the transition
regime with L /D=1.48 are presented in Fig. 13. The images could
not be phase-locked in this case because the dominant frequency
is not sufficiently strong relative to the other modes. It is impor-
tant to note the prevalence of two quasi-steady shock waves along
the length of the cavity, associated with the shear layer roll up in
this case, as opposed to a single system of � shocks in the external
flow distinctly associated with strong compression waves inside
the cavity in the previous case. The shear layer is also thinner than
in the previous case. This correlates with the jump in the dominant
frequency between the two cases, wherein the length scale of the
vortex is decreased and the number of vortices along the length of
the cavity is correspondingly increased at any instant �21�.

For the case of the deep cavity, the phase-locked images are
shown in Fig. 14. As in the case of the shallow cavity, compres-
sion waves originate from the cavity trailing edge as a vortex

Fig. 10 Time-averaged schlieren images for a cavity of 40 mm
length and different depths

Fig. 11 Instantaneous schlieren images of flow over cavities
that do not excite discrete oscillations
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impinges there �Fig. 14�a�� and propagates upstream �Figs. 14�b�
and 14�c��. The vortex is observed to move along the rear wall of
the cavity subsequently. Successive compression waves are gen-
erated and reflected at the cavity leading edge �Figs. 14�d� and
14e��. They intersect each other �Fig. 14�f�� and momentarily
merge �Figs. 14�g� and 14h��, but subsequently emerge and con-
tinue to propagate in their respective directions, probably with
reduced strength �Fig. 14�i��, and are completely dampened before
they reach the walls of the cavity. The cycle is repeated, as seen in
Fig. 14�j�. The � shock observed in the free stream is formed
twice in a cycle, once at the beginning, and again at about 180 deg
phase angle. Unlike in the case of the shallow cavity discussed
first, the � shock is formed because of the intersection of two
shocks, one attached to compression wave and another emerging
due to rollup of the shear layer from the leading edge of the
cavity. The shear layer is thicker than in the case of the shallow
cavity, and the number of vortices at any instant, correspondingly
fewer.

The above description shows that, given sufficient length, sig-
nificant longitudinal oscillations occur even when the cavity is
geometrically deep and the excited acoustic oscillations exhibit
transverse modes. This is because the length of the cavity is larger
than the lengthscale of vortex rollup in the shear layer at the
cavity lip, as indicated by the time-averaged schlieren images.

Fig. 12 Phase-locked images and corresponding acoustic
spectrum for a cavity with L=40 mm and D=15 mm„L /D
=2.67…

Fig. 13 Instantaneous images at different time instants and
corresponding acoustic spectrum for a cavity with L=40 mm
and D=27 mm„L /D=1.48…

Fig. 14 Phase-locked images and the corresponding acoustic
spectrum for a cavity with L=40 mm and D=70 mm„L /D
=0.57…
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This shows that the oscillatory behavior of the shear layer cannot
be strictly classified as that of shallow or deep cavities solely
based on the L /D ratio.

Conclusions
The cavity-induced acoustic oscillations are studied for a free-

stream Mach number of 1.5. There exists frequency jumps at L /D
ratios of 0.94 and 1.5 of the cavity. The jumps occur when there is
change from longitudinal oscillations for shallow cavities with
L /D�1.5 to transverse oscillations for deep cavities with L /D
�0.94. The amplitudes reach peak values at L /D ratios of around
2.0 and 0.5, respectively. The Strouhal number based on the cavity
depth decreases in a hyperbolic fashion from 1.8 to 0.2, asymp-
totically. The variation in the Strouhal number based on the cavity
length shows that for shallow cavities it is constant for increasing
L /D ratio, implying that the frequency decreases with length. The
time-averaged flow visualization shows the details of the shock
structure formed due to the unstable shear layer along the length
of the cavity. The instantaneous visualization offers insight into
the mechanism of quasi-steady shock formation due to the shear
layer rollup and propagation of compression waves inside the cav-
ity for different L /D ratios. The observed mode shifts are ex-
plained due to such interaction between the shocks, the shear
layer, and compression waves.
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Steady-State Cavitating Nozzle
Flows With Nucleation
Quasi-one-dimensional steady-state cavitating nozzle flows with homogeneous bubble
nucleation and nonlinear bubble dynamics are considered using a continuum bubbly
liquid flow model. The onset of cavitation is modeled using an improved version of the
classical theory of homogeneous nucleation, and the nonlinear dynamics of cavitating
bubbles is described by the classical Rayleigh-Plesset equation. Using a polytropic law
for the partial gas pressure within the bubble and accounting for the classical damping
mechanisms, in a crude manner, by an effective viscosity, stable steady-state solutions
with stationary shock waves as well as unstable flashing flow solutions were obtained,
similar to the homogeneous bubbly flow solutions given by Wang and Brennen [J. Fluids
Eng., 120, 166–170, 1998] and by Delale, Schnerr, and Sauer [J. Fluid Mech., 427,
167–204, 2001]. In particular, reductions in the maximum bubble radius and bubble
collapse periods are observed for stable nucleating nozzle flows as compared to the
nonnucleating stable solution of Wang and Brennen under similar conditions.
�DOI: 10.1115/1.1949643�

1 Introduction
Recent investigations of steady-state cavitating nozzle flows of

homogeneous bubbly mixtures using spherical bubble dynamics
with a polytropic law for the partial gas pressure have shown flow
instabilities that correspond to nonphysical solutions �e.g., see
Wang and Brennen �1� and Delale et al. �2��. The existence of
such instabilities has suggested the need for improvements and
modifications in the original model equations, especially by intro-
ducing the damping mechanisms left out in the description of
bubble dynamics. By taking thermal damping into account in a
model similar to that given by Prosperetti �3�, Delale �4� has
shown that the steady-state instabilities encountered in homoge-
neous bubbly cavitating nozzle flows can disappear to some ex-
tent. A recent numerical investigation by Preston et al. �5� shows
the possibility that the instabilities in steady-state nozzle flow so-
lutions of homogeneous bubbly mixtures may correspond to bub-
bly shock waves found in the diverging section of the nozzle and
propagated downstream.

The aim of this investigation is to construct and test a cavitating
flow model with nucleation. Although bubble formation in most
cavitating flows occurs by heterogeneous nucleation, we here use
homogeneous nucleation theory due to a lack of a heterogeneous
theory with reasonable nucleation rates. For this reason the model
equations for quasi-one-dimensional cavitating nozzle flows with
spherical bubble dynamics are modified to take into account the
effect of bubble nucleation. An improved version of the classical
nucleation rate equation for homogeneous bubble nucleation by
Delale et al. �6� is applied to determine the onset of cavitation
using a parametric investigation, which treats some of the un-
known quantities, such as the initial partial gas pressure of the
bubble and the initial bubble radius at the onset of cavitation, as
parameters. The nonlinear bubble dynamics is described by the
classical Rayleigh-Plesset equation. Using a polytropic law for the
partial gas pressure and lumping all damping mechanisms to-
gether, in a crude manner, in the form of viscous dissipation,
quasi-statically stable solutions with or without bubbly shock
waves as well as unstable solutions are obtained, similar to the
ones obtained by Wang and Brennen �1� in nonnucleating nozzle

flows of bubbly liquids. Reductions in the maximum bubble ra-
dius and in the collapse periods of bubbles are observed in the
nucleating bubbly flow of this investigation as compared to that of
Wang and Brennen in nonnucleating bubbly flows.

2 Cavitating Flow Model With Nucleation
In this section we incorporate homogeneous bubble nucleation

into the flow equations and introduce a cavitating flow model
based on the two-phase homogeneous flow description. In particu-
lar, for the reasons we clarify in Sec. 3, we use an improved
version of the classical theory of homogeneous bubble nucleation,
although most cavitating flows would demand the use of hetero-
geneous bubble nucleation. We neglect the effects of bubble-
bubble interactions and bubble coalescence, which are significant
when bubbles grow to relatively large sizes. Bubble fission, which
can lead to significant energy dissipation during violent collapses
�7,8�, is also neglected. The classical damping mechanisms �vis-
cosity, thermal damping, and acoustic radiation� are taken into
account, somewhat in a crude manner, by an effective viscosity. A
more realistic model, in addition to these effects, would require
the use of two fluid equations, one for the gaseous and the other
for the liquid phase, together with the interface interactions be-
tween the phases. In our opinion, this can be considered separately
when a successful cavitation model, based on homogeneous two-
phase flow and that accounts for all relevant effects of bubble
nucleation and bubble dynamics, is constructed and tested against
bubbly cavitating flow simulations in different geometries. In
what follows we consider a quasi-one-dimensional cavitating
nozzle flow model under the above-stated assumptions. The equa-
tions of motion, in this case, can be written as

A�
���

�t�
+

�

�x�
���u�A�� = 0 �1�

�n�

�t�
+

1

A�

�

�x�
�n�u�A�� = J� �2�

��
du�

dt�
= −

�p�

�x�
�3�

where p�, ��, u�, and n� are, respectively, the mixture pressure,
mixture density, mixture flow speed, and number density of
bubbles �per unit volume of the mixture�, and where t� is the time,
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x� is the nozzle axial coordinate, A� is the cross-sectional area of
the nozzle, and d /dt�=� /�t�+u�� /�x� is the material or total de-
rivative. The mixture density �� is related to the liquid density �L�
at some reference pressure p0� by

�� = �L��1 + �c��1 − �� �4�

where � is the void fraction and where �c�1 is introduced to take
into account the compressibility of the liquid. For Tait’s equation
of state of the liquid, it assumes the form

1 + �c = � p + B�/p0�

1 + B�/p0�
�1/m

�5�

where p� p� / p0� is the normalized pressure and B� and m are
constants �B�=3010 atm and m=7.15 for water�. If we further
assume that the bubbles are spherical and monodispersed with
radius R�, the void fraction � is related to the bubble number
density n� by the relation

� = 4
3�R�3n� �6�

Assuming that the gas phase is sufficiently dilute, the nonlinear
bubble dynamics can be described by the classical Rayleigh-
Plesset equation as

R�
d2R�

dt�2 +
3

2
�dR�

dt�
�2

=
pB� − p�

�L�
−

4�L�

R�
�dR�

dt�
� −

2S�

�L�R�
�7�

where S� is the surface tension, �L� is the kinematic viscosity of the
liquid, and pB� is the total pressure of the bubble, assumed to be
uniform within the bubble and taken as the sum of the partial
vapor pressure pv� and partial gas pressure pg� as

pB� = pv� + pg� �8�

Equations �1�–�8� yield a complete system of model equations for
quasi-one-dimensional cavitating nozzle flows, which should be
supplemented by appropriate initial and boundary conditions
�nozzle inlet and exit conditions�, provided that the local nucle-
ation rate J� and the partial gas pressure pg� can be evaluated by
some reliable means. Such an evaluation of activated cavitation
nuclei by an improved version of the classical theory of homoge-
neous bubble nucleation will be considered, in detail, in Sec. 3. A
polytropic law for the partial gas pressure will be used here solely
for comparison with the results of Wang and Brennen �1�, despite
the fact that thermal conduction and gas diffusion through the
bubble should be accurately taken into account. The above gov-
erning equations can be simplified if we consider the algebraic
relations �4� and �6�. It follows from Eqs. �2� and �6� that

d�

dt�
+ �� �u�

�x�
+ u�� 1

A�

dA�

dx�
� −

3

R�

dR�

dt�
	 =

4

3
�R�3J� �9�

On the other hand, the continuity equation �1� and Eq. �4� yield

d�

dt�
− �1 − ��� �u�

�x�
+ u�� 1

A�

dA�

dx�
� +

1

�L�cL�
2�1 + �c�

dp�

dt�
	 = 0

�10�

where cL� is the speed of sound in the liquid given by

cL�
2 =

1

�L�

dp�

d�c
�11�

It then follows from Eqs. �9� and �10� that

�1 − ��
�L�cL�

2�1 + �c�
dp�

dt�
+

�u�

�x�
+ u�� 1

A�

dA�

dx�
� −

3�

R�

dR�

dt�
−

4

3
�R�3J� = 0

�12�

The momentum equation �3� together with the Rayleigh-Plesset
equation �7� and Eqs. �10� and �12� constitute the model equations

for quasi-one-dimensional nozzle flows. Introducing the normal-
ization

u =
u�

Ui�
, p =

p�

�L�Ui�
2 , � =

��

�L�
, R =

R�

Ri�
, J =

Hi�
4J�

Ui�

pB =
pB�

�L�Ui�
2 , pv =

pv�

�L�Ui�
2 , pg =

pg�

�L�Ui�
2

x =
x�

Hi�
, t =

t�Ui�

Hi�
, A =

A�

Ai�
, and � =

Ri�

Hi�
�13�

where Ui� is the inlet flow speed, Hi� is the inlet nozzle height, Ai�
is the inlet cross-sectional area of the nozzle, and Ri� is either the
inlet bubble radius �for nonnucleating bubbly flows� or the critical
bubble radius at the onset of cavitation �for nucleating flows�, the
reduced system of normalized equations for quasi-one-
dimensional cavitating nozzle flows with nucleation assume the
form

d�

dt
− �1 − ��� �u

�x
+ u� 1

A

dA

dx
� +

M2

�1 + �c�
dp

dt
	 = 0 �14�

M2�1 − ��
�1 + �c�
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dt
+

�u

�x
+ u� 1

A

dA

dx
� −

3�

R

dR

dt
−

4

3
��3R3J = 0

�15�

�1 + �c��1 − ��
du

dt
= −

�p

�x
�16�

and

R
d2R

dt2 +
3

2
�dR

dt
�2

=
1

�2�pB − p −
4

�Re�R
�dR

dt
� −

2

�We�R	
�17�

where d /dt=� /�t+u� /�x is the normalized material derivative
and the flow Mach number M, the flow Reynolds number Re and
the Weber number We are defined by

M =
Ui�

cL�
, Re =

Hi�Ui�

�L�
, and We =

�L�Ri�Ui�
2

S�
�18�

Equations �14�–�17� with appropriate initial values and nozzle in-
let and exit conditions constitute the model equations for quasi-
one-dimensional cavitating nozzle flows provided that they are
supplemented by expressions for the normalized total pressure pB
and normalized nucleation rate J.

3 Homogeneous Bubble Nucleation and Onset
of Cavitation

In this section we consider homogeneous bubble nucleation in
pure liquid and its extension to gas-liquid solutions, in particular,
to the problem of cavitation inception. Homogeneous bubble
nucleation has been investigated for years both experimentally
and theoretically �e.g., see �9�, and references therein�. Although
nonclassical methods, such as the density functional method �10�
and molecular dynamics simulations �11�, can yield a better un-
derstanding of the phenomenon, they seem to be of limited prac-
tical use in bubbly cavitating flows. Despite its simplicity, the
classical theory fails to quantitatively predict the tensile strengths
of liquids at relatively low temperatures and provides very low
steady-state nucleation rates �10–12�. In a recent paper, Delale et
al. �6� have corrected for the critical radius and for the expression
of steady-state nucleation rate of the classical theory by construct-
ing a phenomenological nucleation barrier suitable for direct com-
parison with the results of experiments. Their results show that the
critical radius rc� beyond which a spherical bubble can grow is
given by
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rc� =
2S�

�pv� − pL��exp

�19�

where pv� is the vapor pressure inside the bubble, pL� denotes the
pressure of the surrounding liquid, and S� is the surface tension.
The subscript “exp” denotes the value of superheat achieved in
experiments rather than the value that would be attained in a re-
versible process. The steady-state nucleation rate J� is then given
by

J� = Zv�2S��L�
2

�m1�
3 �1/2

exp�−
4�rc�

2S�

3kBTL�
�1 − 2��	 �20�

where m1� denotes the mass of a single molecule of the vapor, TL�
is the liquid temperature, Zv denotes the compressibility factor of
the saturated vapor at the liquid temperature TL� ,kB is Boltzmann’s
constant, and ��0���1/2� is a correction factor, which, in gen-
eral, is both substance and temperature dependent and accounts
for the difference between the superheat threshold �or tensile
strength� achieved in experiments and that would occur in a re-
versible process. In particular, �=0 yields the well-known classi-
cal expression for the steady-state nucleation rate. Delale et al. �6�
show that the predicted superheat temperatures are in excellent
agreement with those measured in boiling experiments at various
liquid pressures for a variety of substances. They also achieve
reasonable nucleation rates by using �=1/3 for reduced superheat
temperatures of 	0.85 in homogeneous boiling experiments for
most of the substances investigated, with the exception of water.
For the homogeneous boiling of water, Delale et al. reach nucle-
ation rates comparable to those of experiments for �=7/16, a
value that is close to the limiting value 1/2.

In contrast to the explosive boiling experiments discussed
above, where bubble formation occurs by homogeneous nucle-
ation, bubble formation in cavitation, in most cases, occurs by
heterogeneous nucleation. In this case attached voids, developed
in crevices of solid particles �Harvey nuclei� contained in the liq-
uid or on hydrophobic surfaces, act as cavitation nuclei �13,14�.
These voids, unfortunately, depend on numerous parameters re-
lated to the solid surface and to the composition and temperature
of the liquid, as well as to the dynamical operating conditions of
the system. Most of these parameters demand the detailed topog-
raphy of the solid surfaces and are therefore statistical in nature.
Consequently, the classical theory of heterogeneous nucleation re-
quires substantial modifications to account for the parameters
mentioned above before it can be applied to the problem of bubble
formation in cavitation. The improved classical theory of homo-
geneous nucleation �6� can, nevertheless, be applied to predict
reasonable critical sizes and nucleation rates in cavitation, com-
pared to those reached in numerical simulations and experiments,
provided that it is extended to account for the effect of dissolved
gas in the liquid. Various investigations �15–17� show that for
weak gas-liquid solutions, Eq. �19� for the critical radius can be
extended as

rc� =
2S�

pv� + pg� − pL�
=

2S�

pv� + c�H� − pL�
�21�

to account for the dissolved gas effect where pL� is the liquid
pressure and pv� and pg� are, respectively, the partial pressure of the
vapor and that of the gas inside the bubble of critical size. In Eq.
�21�, we have also utilized Henry’s law pg�=H�c�, where c� de-
notes the concentration of dissolved gas in the liquid and H� is
Henry’s constant.

We now consider the cavitation onset point with local liquid
pressure pi� defined as that point where sufficient nucleation sites
are activated for measurable nucleation rates. The bubble radius
Ri� at the onset of cavitation �the critical radius at the onset of
cavitation� now follows from Eq. �21� as

Ri� =
2S�

�pv� − pi���1 + 
�
�22�

where


 =
c�H�

�pv� − pi��
�23�

It should be mentioned that, with the contaminant gas, it is, in
fact, possible to have the cavitation onset point at pi�	 pv� �e.g.,
see �18��. In this case 
�−1 since Ri�	0. The steady-state nucle-
ation rate following the onset of cavitation point along path lines
can now be evaluated by Eqs. �20�, �21�, and �23� as

J� = Zv�2S��L�
2

�m1�
3 �1/2

exp
−
16�S�3�1 − 2��

3kBTL��pv� − pL� + 
�pv� − pi���
2�

�24�

with 0���1/2 and with local the critical radius given by

rc� =
2S�

pv� − pL� + 
�pv� − pi��
�25�

4 Quasi-One-Dimensional Steady-State Cavitating
Nozzle Flows With Nucleation

In this section we restrict the cavitating flow model with nucle-
ation discussed in Sec. 2 to quasi-one-dimensional steady-state
cavitating flow model in order to compare the flow field in nucle-
ating flows to that of nonnucleating bubbly flows, discussed, in
detail, by Wang and Brennen �1� and Delale et al. �2�. To do so,
we further neglect the compressibility of the liquid by taking the
limit M→0 and �c→0. The normalized quasi-one-dimensional
equations �14�–�17� then reduce to

�1 − ��uA = 1 − �i �26�

du

dx
+ u� 1

A

dA

dx
� −

3�u

R

dR

dx
−

4

3
��3R3J = 0 �27�

�1 − ��u
du

dx
= −

dp

dx
�28�

and

R�u2d2R

dx2 + u
du

dx

dR

dx
� +

3

2
u2�dR

dx
�2

=
1

�2�pB − p −
4u

�Re�R
�dR

dx
� −

2

�We�R	 �29�

where �i denotes the inlet void fraction �for pure liquid flow at the
inlet �i=0�. In Eq. �27�, the normalized nucleation rate J can be
written as

J = J0 exp�− Gb� �30�

where J0 is the normalized preexponential factor given by

J0 =
Hi�

4

Ui�
Zv�2S��L�

2

�m1�
3 �1/2

�31�

and where Gb denotes the normalized Gibbs activation energy,
defined by

Gb =
16�S�3�1 − 2��

3kBTL��pi� − p� + 2S�/Ri��
2 . �32�

In arriving at Eq. �32�, we have eliminated 
 between Eqs. �22�
and �24�. It is also worthwhile to note that the total normalized
bubble pressure pB in the Rayleigh-Plesset equation �29�, until
now, has been left quite arbitrary in our formulation and, there-
fore, needs detailed consideration. It is well known that the bubble
pressure pB significantly affects bubble dynamics �e.g., see
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�3,19,20�� and requires simultaneous consideration of the energy
and transport equations within the bubble and in the surrounding
liquid. For cavitating bubbly flows the coupling of these equations
with the flow equations makes the solution formidable. Therefore,
approximations need to be introduced. A simple model for cavi-
tating flows that discusses the thermal conduction within the
bubble has been proposed by Delale �4� following the work of
Prosperetti �3�. Here, we will restrict our calculations only to the
polytropic expansion and compression of the gas within the
bubble solely to be able to compare our results of steady-state
cavitating nozzle flows with nucleation to those of bubbly cavitat-
ing flows, obtained by Wang and Brennen �1� and by Delale et al.
�2�. Consequently, we assume that the gas within the bubble obeys
the polytropic law and write

pB = pv + pg = pv +
pgi

R3k �33�

where k is the polytropic index and pgi denotes the normalized
partial gas pressure at the inlet for bubbly cavitating flows and the
normalized partial gas pressure at the onset of cavitation for cavi-
tating flows with nucleation.

By eliminating � between Eqs. �26�–�28�, we obtain

uA − �1 − �i�
R3 = �i +

4

3
��3�

xi

x

J���A���d� �34�

and

du

dx
+

A

�1 − �i�
dp

dx
= 0 �35�

where we have defined the normalized axial coordinate xi to de-
note the location at the onset of cavitation. It then follows that J
0 whenever x�xi. In particular, for nonnucleating bubbly cavi-
tating flows, Eqs. �26� and �34� yield

�

�1 − ��R3 =
�i

�1 − �i�
= const �36�

as required in the formulation of quasi-one-dimensional bubbly
nozzle flows �e.g., see, �1,2,21��. On the other hand, for the flow
of pure liquid with cavitation onset at x=xi, Eq. �34� takes the
form

uA = 1 + 4
3��3R3�

xi

x

J���A���d� �37�

We now define

F1�p,R,x� = u =
�1 − �i�

A
+ ��i +

4

3
��3�

xi

x

J���A���d�	R3

A

�38�

the p dependence of the functional F1 arising from the p depen-
dence of the normalized nucleation rate J. It then follows by direct
differentiation that

F2�p,R,
dR

dx
,x� =

du

dx

= −
�1 − �i�

A2

dA

dx
+

4

3
��3R3J

+ ��i +
4

3
��3�

xi

x

J���A���d�	
�

R3

A
� 3

R

dR

dx
−

1

A

dA

dx
� �39�

The integro-differential system of equations characterizing quasi-

one-dimensional cavitating nozzle flows with nucleation can now
be written as

dR

dx
=  , �40�

dp

dx
= −

�1 − �i�
A

F2�p,R,,x� �41�

and

d

dx
= 
− F1�p,R,x�F2�p,R,,x�R − 3

2 �F1�p,R,x��22

+
1

�2�pv +
pgi

R3k − p −
4

�Re�R
F1�p,R,x�

−
2

�We�R	���R�F1�p,R,x��2� �42�

where F1�R ,x� and F2�R ,dR /dx ,x� are given by Eqs. �38� and
�39�, respectively. For a given fluid, the above system of equations
contains the parameters � ,Ri� ,Hi� �or ��, �i �only for bubbly flows
at inlet�, the surface tension S� and the nozzle inlet velocity Ui� �or
the Weber number We and the Reynolds number Re�, and the
polytropic index k. The system of equations �40�–�42� are then
solved for the pressure p and the bubble radius R subject to nozzle
inlet-exit conditions. The flow speed u follows by Eq. �38�.

5 Results and Discussion
We now consider the flow of water, possibly containing dis-

solved air and particles �Harvey nuclei�, which can act as bubble
nucleation sites, through a converging-diverging nozzle at 20 °C
�with �L�=1000 kg/m3, �L�=1�10−3 Ns/m2, S�=0.074 N/m,
pv�=0.0234 bar�. For reasons of comparison with the steady-state
bubbly cavitating nozzle flow solution of Wang and Brennen �1�,
we employ their geometric nozzle configuration as shown in Fig.
1. With appropriate scaling so that the throat is located at x=2.5,
we can write the normalized area of Wang and Brennen as

A�x� = 
1 + 0.5�1 − cos�2�x

5
�	�−1/2

for 0 � x � 5 �43�

and is equal to unity elsewhere, corresponding to �=1.4�10−3.
The correction factor � for the Gibbs activation energy, the critical
radius Ri� at the onset of cavitation and 
, defined by Eq. �23�, are
chosen as parameters in the model since there are uncertainties in
determining these quantities. As for the nozzle inlet conditions,
the inlet void fraction is set equal to zero ��i=0� implying liquid
flow without bubbles at the inlet. The inlet flow speed and inlet
cavitation number are set, respectively, at Ui�=10 m/s and �i
=0.8 so that cavitation inception can take place. For reasons of
comparison, the same effective viscosity of Wang and Brennen
�30 times that of water replacing the Reynolds number given by
Eq. �18� by an effective Reynolds number� is used to account, in
an ad hoc manner, for the classical damping mechanisms. The

Fig. 1 Geometric configuration of the nozzle employed by
Wang and Brennen †1‡ „in our normalization L=5…
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correction factor � for the normalized Gibbs activation energy in
Eq. �32� for the cavitation of water was varied critically close to
the limiting value 0.5 �within ten decimal places� in order to ob-
tain reasonable nucleation rates that have been reported by many
previous investigators �10–12�. The onset of nucleation was deter-
mined by varying the critical bubble size Ri� between 9 and 20 �m
for 
=0.5 and 
=1.0.

The integrodifferential system of equations �40�–�42� was
solved under the above specific conditions using a fourth-order
Runge-Kutta method with adaptive step size. Stable steady-state
flow solutions, including those with bubbly shock waves, as well
as unstable flow solutions were obtained. The results of the
present investigation for nucleating bubbly flows are plotted in
Figs. 2–6 against those of Wang and Brennen �1� for nonnucleat-
ing bubbly flows under similar conditions to identify the effect of
nucleation on the flow field. The distributions for the normalized
flow speed u, the pressure coefficient Cp �defined as Cp= �p�
− p0�� / �0.5�L�Ui�

2� with p0� denoting the liquid pressure at the inlet

of the nozzle�, the normalized radius R �normalized with respect
to the critical radius Ri� at the onset of cavitation�, and the void
fraction � as a function of the normalized axial coordinate x for
each case are shown in Figs. 2–5, whereas the variation of the
nucleation rate along the nozzle axis is shown in Fig. 6. The
nucleating flow results are computed for 
=0.5 and �
=0.499 999 9927 with the initial critical radius Ri� varied between
14 and 20 �m and the nonnucleating bubbly flow results of Wang
and Brennen �1� are computed for the initial void fractions �i
=2.5�10−6 and �i=3.1�10−6. The stable solutions for nucleat-
ing �Ri�=14.0 �m� and non-nucleating ��i=2.5�10−6� bubbly
flows look qualitatively similar, but there are quantitative differ-
ences arising from the effects of nucleation. In the nucleation
zone, defined as the zone where significant nucleation rates are
obtained with a maximum at the throat �in our case, approxi-
mately the interval 2�x�3�, the newly nucleated bubbles reach
the corresponding growth rates of the growing bubbles of non-
nucleating bubbly flows over a very short distance, but the

Fig. 2 Distributions of the flow speed u along the axis of the
nozzle in Fig. 1 under the flow conditions with flow speed Ui�
=10 m/s, inlet cavitation number �i=0.8, and nucleation rate
parameters �=0.499 999 9927 and �=0.5 for the values of the
critical bubble radius Ri�=14.0, 14.2, and 20.0 �m at the onset
of cavitation in nucleating bubbly flows of the present investi-
gation and for the values of the void fractions �i=2.5Ã10−6 and
�i=3.1Ã10−6 in the nonnucleating bubbly flow of Wang and
Brennen †1‡ „stable nucleating and nonnucleating cavitating
flow solutions with a downstream ringing structure are shown,
respectively, for Ri�=14.0 �m and for �i=2.5Ã10−6

…

Fig. 3 Distributions of the pressure coefficient Cp along the
axis of the nozzle in Fig. 1 under the flow conditions and nucle-
ation rate parameters stated in Fig. 2 for the values of the criti-
cal bubble radius Ri�=14.0, 14.2, and 20.0 �m at the onset of
cavitation in nucleating bubbly flows of the present investiga-
tion and for the values of the void fractions �i=2.5Ã10−6 and
�i=3.1Ã10−6 in the nonnucleating bubbly flow of Wang and
Brennen †1‡ „stable nucleating and nonnucleating cavitating
flow solutions with a downstream ringing structure are shown,
respectively, for Ri�=14.0 �m and for �i=2.5Ã10−6

…

Fig. 4 Distributions of the normalized radius R along the axis
of the nozzle in Fig. 1 under the flow conditions and nucleation
rate parameters stated in Fig. 2 for the values of the critical
bubble radius Ri�=14.0, 14.2, and 20.0 �m at the onset of cavi-
tation in nucleating bubbly flows of the present investigation
and for the values of the void fractions �i=2.5Ã10−6 and �i
=3.1Ã10−6 in the nonnucleating bubbly flow of Wang and Bren-
nen †1‡ „stable nucleating and nonnucleating cavitating flow
solutions with a downstream ringing structure are shown, re-
spectively, for Ri�=14.0 �m and for �i=2.5Ã10−6

…

Fig. 5 Distributions of the void fraction � along the axis of the
nozzle in Fig. 1 under the flow conditions and nucleation rate
parameters stated in Fig. 2 for the values of the critical bubble
radius Ri�=14.0, 14.2, and 20.0 �m at the onset of cavitation in
nucleating bubbly flows of the present investigation and for the
values of the void fractions �i=2.5Ã10−6 and �i=3.1Ã10−6 in
the nonnucleating bubbly flow of Wang and Brennen †1‡ „stable
nucleating and nonnucleating cavitating flow solutions with a
downstream ringing structure are shown, respectively, for Ri�
=14.0 �m and for �i=2.5Ã10−6

…
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bubbles are still not large enough, both in size and in population,
to alter the incompressible flow field significantly �Fig. 4�. Con-
sequently, the flow field remains almost incompressible in most of
the nucleation zone in nucleating flows, whereas, over the same
region, the bubbles grow to sizes that alter the incompressible
flow field, though not significantly, in nonnucleating bubbly flows
�Figs. 2, 3, and 5�. In this zone the nucleation rate peaks at a value
of Jmax� =1010 m−3s−1 �Fig. 6�. Downstream of the nucleation zone
�x	3�, where nucleation has completely vanished, both nucleat-
ing and nonnucleating bubbly flows seem to exhibit the same rate
of growth until the maximum radius is reached around x=4.5 �Fig.
4, it should be mentioned that the normalization of the radius for
both cases is made with respect to the critical size Ri� at cavitation
onset�. This leads to a higher maximum radius for the nonnucle-
ating bubbly flows of Wang and Brennen �1�. The distributions for
the flow speed and pressure coefficient, in both cases, show only
slight deviations from each other, the deviations arising mainly
from the differences in the nucleation zone �Figs. 2 and 3�. On the
other hand, the corresponding distributions of the void fraction �
in these regions show significant deviations when compared to
each other, with a higher maximum in the case of nucleating
flows. This implies a higher number density for the case of nucle-
ating flow as compared to the nonnucleating bubbly flow case of
Wang and Brennen. Now, because of their lower maximum bubble
radii, the collapse of bubbles in nucleating flows proceeds over a
shorter distance than that of nonnucleating bubbly flows, with a
distance lag in between. This distance lag continues also for the
ringing structure downstream of the nozzle in the constant area
region �x	5� although the amplitude of oscillations are almost
the same �Figs. 2–5�. The net effect of nucleation seems to be the
reduction of the maximum bubble radius in nucleating bubbly
flows, resulting in a shorter collapse period, as compared with
nonnucleating bubbly flows under similar conditions. For the
same values of the parameters and under the same flow condi-
tions, a bifurcation to a “quasi-statically unstable flow” occurs
around Ri�=14.2 �m for nucleating flows and around �i=3.0
�10−6 for the nonnucleating bubbly flows of Wang and Brennen
�1� �Figs. 2–6�. For nucleating flows, the nucleation rate first
reaches a peak and then diminishes, with almost no difference
compared to the “quasi-statically stable” case. However, the nor-
malized radius R and the void fraction � continue to grow. Con-
sequently, the pressure cannot recover. It suddenly falls down re-
sulting in a second nucleation zone, where the nucleation rate now
grows without limit and the computation for the normalized radius
R breaks down around x=4.5. As Ri� is further increased in nucle-

ating flows �Figs. 2–6 for Ri�=20 �m�, the nucleation rate grows
exponentially and without limit after onset, causing instabilities to
occur near the throat.

Finally, it seems that a cavitating nozzle flow solution with a
bubbly shock wave in the diverging section of the nozzle is also
possible under the flow conditions stated in Fig. 7 for the values
of the parameters 
=1.0 and �=0.499 999 9930 when the initial
bubble radius Ri� exceeds 8 �m �unfortunately, for this case a
nonnucleating bubbly flow solution of similar nature is not avail-
able for the nozzle of Wang and Brennen �1� for comparison�.
Figures 7–11 show the results of cavitating nozzle flows with a
stationary bubbly shock wave in the divergent section of the
nozzle for Ri�=9 �m. The solutions for the normalized flow speed
u, the pressure coefficient Cp, the normalized radius R, and the
void fraction � are shown in Figs. 7–10. The normalized radius
relaxes toward unity after a few rebounds, and the pressure recov-
ers toward the inlet pressure within a thin zone with some pres-
sure loss due to dissipation. The nucleation rate now peaks at a
value of Jmax� =1011 m−3s−1 �Fig. 11�. Under the same conditions
and the same fixed values of the parameters 
 and �, if the initial
radius is further increased, a bifurcation to a quasi-statically un-
stable solution with a sudden pressure drop in the divergent sec-
tion of the nozzle occurs. Consequently, a second nucleation zone,

Fig. 6 Distributions of the nucleation rate J� along the axis of
the nozzle in Fig. 1 under the flow conditions and nucleation
rate parameters stated in Fig. 2 for the values of the critical
bubble radius Ri�=14.0, 14.2, and 20.0 �m at the onset of cavi-
tation in nucleating bubbly flows of the present investigation „a
stable cavitating flow solution is shown for Ri�=14.0 �m…

Fig. 7 Distributions of the flow speed u along the axis of the
nozzle in Fig. 1 under the flow conditions with flow speed Ui�
=10 m/s, inlet cavitation number �i=0.8, and nucleation rate
parameters �=0.499 999 9930 and �=1.0 for the values of the
critical bubble radius Ri�=9.0, 9.1, and 14.0 �m at the onset of
cavitation in nucleating bubbly flows of the present investiga-
tion „a stable cavitating flow solution with a stationary bubbly
shock wave is shown for Ri�=9.0 �m…

Fig. 8 Distributions of the pressure coefficient Cp along the
axis of the nozzle in Fig. 1 under the flow conditions and nucle-
ation rate parameters stated in Fig. 7 for the values of the criti-
cal bubble radius Ri�=9.0, 9.1, and 14.0 �m at the onset of cavi-
tation in nucleating bubbly flows of the present investigation „a
stable cavitating flow solution with a stationary bubbly shock
wave is shown for Ri�=9.0 �m…
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now growing without limit, occurs resulting in an unstable solu-
tion. Increasing the initial radius at the onset of nucleation even
further results in the location of the instability moving toward the
throat as shown in Figs. 7–11 for Ri�=14.0 �m. In this case the
instability occurs very close to the throat, where the pressure falls
down and the flow speed increases almost discontinuously, the
nucleation rate now growing exponentially and without limit. The
computation for the radius breaks down at a finite growth rate in
this case.

This investigation has demonstrated the effect of homogeneous
bubble nucleation in cavitating nozzle flows as compared to non-
nucleating bubbly flows. Although the flow field in the diverging
part of the nozzle looks qualitatively similar in both cases, there
are quantitative differences. Lower maximum bubble radii and
shorter collapse distances are observed in stable nucleating bubbly
cavitating flows as compared to the nonnucleating bubbly flow
investigation of Wang and Brennen �1�. Both solutions show bi-
furcations to unstable “flashing” flows, which are nonphysical.
Recent investigations have shown that these unstable solutions
can either be stabilized by thermal damping �4� or they correspond
to unsteady flows with bubbly shocks propagating downstream in
the divergent section of the nozzle �5�.

6 Conclusions
Quasi-one-dimensional steady-state cavitating nozzle flows

with homogeneous nucleation are considered �despite the fact that
bubbles are formed by heterogeneous nucleation in most cavitat-
ing flows�. For this reason the onset of cavitation is modelled by
using an improved version of the classical nucleation theory and
by treating the unknown quantities, such as the initial partial gas
pressure and initial bubble radius at the onset of cavitation, as
parameters. Therefore, a parametric investigation of the onset of
cavitation in quasi-one-dimensional cavitating nozzle flows is car-
ried out. The nonlinear dynamics of cavitating bubbles is de-
scribed by the classical Rayleigh-Plesset equation where a poly-
tropic law for the partial gas pressure is employed by taking into
account the effect of damping mechanisms, in a rather crude man-
ner, in the form of viscous dissipation using an effective viscosity
for a direct comparison with the results obtained by Wang and
Brennen �1� for homogeneous bubbly flows. The results of this
investigation show similar qualitative characteristics with those of
steady-state nonnucleating bubbly flows of Wang and Brennen
�1�. Namely, stable steady-state cavitating nozzle flow solutions as
well as a quasi-statically unstable flow solutions are obtained. In
particular, a nucleation zone �where the flow is almost incom-
pressible and the nucleation rate shows a maximum at the nozzle
throat� followed by a bubble growth zone, where the effects of
compressibility are observed, in the divergent section of the
nozzle can be distinguished for the stable steady-state solutions of
nucleating bubbly flows. Compared to the steady-state nonnucle-
ating nozzle flow solution of Wang and Brennen �1� under similar
conditions, a reduction in the maximum bubble radius followed by
a somewhat shorter collapse distance are observed for the nucle-
ating bubbly flow solution of this investigation. Moreover, when
the parameters entering the nucleation rate equation are properly
chosen, stable steady-state cavitating nozzle flow solutions with
stationary bubbly shock waves in the diverging section of the
nozzle seem also possible. We should finally mention that the
instabilities obtained for quasi-one-dimensional steady-state
nozzle flows with nucleation in this investigation can be stabilized
by taking into account thermal damping �e.g., �4�� and/or flow
unsteadiness �see �5��. These and other effects �liquid compress-
ibility, bubble fission, etc.� not considered here are left for future
investigations.
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Nomenclature
A� � cross-sectional area of the nozzle
Cp � pressure coefficient
Gb � Gibbs activation function
H� � Henry’s constant
Hi� � inlet height of nozzle
J� � nucleation rate
M � flow Mach number
R� � bubble radius
Ri� � critical bubble radius at the onset of cavitation
Re � flow Reynolds number
S� � surface tension coefficient
TL� � liquid temperature
Ui� � inlet flow speed
Zv � compressibility of vapor
c� � concentration of dissolved gas in liquid
cL� � speed of sound in liquid
k � polytropic exponent

kB � Boltzmann’s constant
� � micro to macro scale

m1� � mass of a single vapor molecule
n� � number density of bubbles
p � mixture pressure

pB� � total bubble pressure
pg� � partial gas pressure
pi� � liquid pressure at the onset of cavitation
p0� � liquid pressure at the inlet of the nozzle
pv� � partial vapor pressure
t� � time coordinate
u� � flow speed
x� � nozzle axial coordinate

Greek
� � correction factor for nucleation work
� � void fraction

 � gas parameter at the onset of cavitation

�L� � liquid dynamic viscosity
�L� � kinematic viscosity of liquid
�c � nondimensional measure of liquid

compressibility
�� � mixture density
�L� � liquid density
�i � inlet cavitation number

Subscripts
g � gas

i � nozzle inlet or cavitation onset value
L � liquid phase
v � vapor phase

Superscripts

� � signifies a dimensional quantity �otherwise
dimensionless�
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Steady and Dynamic Models of
Fuel and Air Flow in Carburetors
for Small Engines
This work presents the mathematical model of a complex flow network containing short
metering orifices, compressible flow, and two-phase flow in small diameter pipes. It has
been developed to study the steady and dynamic flows in a carburetor for small engines.
It extends the previously published models by incorporating a detailed review of two-
phase flow pressure drop, the effect of the fuel well on the control of air-bleed flow, and
dynamic flow. The homogeneous two-phase flow model, which is commonly used in pre-
vious models, was compared to an empirical correlation derived from experiments in
small pipes and found to be in poor agreement. In order to assess dynamic flow condi-
tions, the model was extended by solving instantaneous one-dimensional Navier-Stokes
equations in single-phase pipes. This strategy proved successful in explaining the mixture
enrichment seen under pulsating flow conditions. The model was also used to derive a
sensitivity analysis of geometries and physical properties of air and fuel.
�DOI: 10.1115/1.1949644�

Introduction
At the time of this publication, over 35 million small engines

are sold every year in the United States and their emissions com-
prise a significant percentage of total pollutants in the U.S. and
worldwide. As demonstrated by the automotive industry, signifi-
cant reductions in emissions are technologically possible, particu-
larly with the use of electronic fuel injection. However, due pri-
marily to cost constraints, small-engine manufacturers rely on
small, inexpensive carburetors to generate the fuel mixture for
their engines. Thus, a better understanding of carburetor perfor-
mance and modeling could lead to better fuel-mixture control and
lower emissions from small engines.

More than a century of carburetor development has produced a
device with a very complex set of internal passages designed to
deliver to the engine the correct air-fuel mixture according to
speed and load. This is achieved through several complex pro-
cesses: flows through short lengths �non-fully developed flow� and
complex geometries; flows that transition from laminar to turbu-
lent; highly transient flow; two-phase flow of various forms
�bubbles, sprays, and thin liquid films�; and flows with changing
fuel and air properties due to rapid changes in temperature and
pressure.

Figure 1 shows the main systems of a simplified carburetor
typically used in small engines. The acceleration of the airflow
across the venturi creates a low pressure at the venturi throat. This
low pressure drives the fuel flow from a constant-level reservoir to
the venturi throat. In its path, fuel travels through a main fuel
orifice, whose function is to restrict its flow, and the emulsion
tube, where it can mix with air coming from an air-bleed system.
Fuel flow may also go to a fuel well that surrounds the emulsion
tube where it may cover or expose the holes in the emulsion tube
according to varying pressures in the emulsion tube and well.
When air flows through the air-bleed system, it passes through an
air-bleed orifice at the entrance of the venturi, then through a
series of small passages, and ends up at the top of the fuel well.
When the holes in the emulsion tube are exposed, air is driven

into the emulsion tube and mixes with fuel, creating a two-phase
mixture of lower mean density than the fuel. This mixture of fuel
and air arrive at the venturi throat, where the fuel may take the
form of droplets, vapor, or a thin film on the wall. All these pro-
cesses take place during each cycle of the engine, starting from
zero air flow and peaking during the intake stroke.

The complexity of the problem and the lack of a complete
model of the processes taking place in it have led manufacturers
to develop carburetors based on a trial-and-error procedure. The
design equations from internal combustion engine books �e.g.,
�1�� provide little practical design guidance, and modeling at-
tempts �e.g., �2–4�� were necessarily based on several simplifying
assumptions due to the limits of computational capabilities at the
times that they were implemented. Those assumptions restricted
the application of the models and extension to practical designs.

The present work describes the mathematical model of a com-
plex dynamic multiphase flow network. Although it was derived
for the characterization of processes inside a carburetor for small
engines, it demonstrates the feasibility of capturing experimen-
tally validated phenomena using a one-dimensional �1D� dynamic
model of multiphase flow networks. It requires the use of appro-
priate two-phase flow correlations and the modeling of transient
behavior through 1D instantaneous Navier-Stokes equations. For
the specific case of carburetors, this model captures phenomena
reported in the literature, such as enrichment of the air-fuel mix-
ture due to the action of the air-bleed system and the pulsating
venturi flow, which were not captured by the previous models
found in the literature. The model also allows for the development
of sensitivity analyses under steady or dynamic conditions, the
implementation of secondary flow systems, such as idle or enrich-
ment systems, and the implementation of the complete carburetor
model in other computer codes for the prediction of engine
performance.

Review of Previous Carburetor Models
The carburetor was the object of much research until emission

regulations and fuel economy became major concerns in the
1970s, encouraging automotive engine designers to implement
electronic fuel injection. A review of the published work on the
metering problem in carburetors can be separated into studies on
airflow, passages for fuel flow, the effect of air and fuel properties,
and the treatment of two-phase flow in the emulsion tube.
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Airflow. The airflow through the carburetor and intake system
has been widely modeled with instantaneous Navier-Stokes equa-
tions and solved through the method of characteristics �5� and
finite differences �6�. Both of these methods can predict, with high
accuracy, the pressure and velocity fields for motored engines
�i.e., assuming only airflow and no interaction with the fuel flow
in the intake system�. Simplifications �such as assuming ideal gas
behavior, one-dimensional flow, quasi-steady boundary condi-
tions, and that heat transfer, friction, and discharge coefficients are
valid for both unsteady and steady flow �1�� are the basis of the
implementation of these models in commercial engine prediction
software �7�.

Interaction of airflow with liquid flow in a venturi has been
simulated for carburetors �8� and for venturi scrubbers �9�, where
the effect of liquid flow can be described as an increase in pres-
sure drop for the same airflow, as reported by Lenz �10�.

The largest restriction on the intake system is the throttle plate.
Experimental works to characterize it were performed by Har-
rington and Bolt �2�, Woods and Goh �11�, and Ehara et al. �12�.
Harrington determined that the flow through the throttle plate can
be modeled as a compressible converging nozzle once the throat
area is calculated. The effect of ambient conditions on carburetor
performance was studied by Bolt and Boerma �13� and Brereton et
al. �14�.

Fuel Flow. One of the most comprehensive models of air and
fuel metering in carburetors was developed by Harrington and
Bolt �2�. The model consisted of a flow network under steady-
state conditions; the equations used included the pressure losses
on the network branches, and the unknowns were the mass flows
in the network branches and static pressures at the network nodes.
Experimental discharge coefficients for restriction elements were
required and the air-fuel flow in the emulsion tube was modeled
using the homogenous two-phase flow model. As the carburetor
modeled was to be used in an eight-cylinder engine, steady flow
was a convenient assumption that allowed prediction over a wide
range of engine speeds. Similar models were developed by Asano
et al. �15�, Shinoda et al. �16�, and Furuyama �17�. All these
models were based on finding specific empirical discharge coeffi-
cients and solving for fuel flows and pressure drops under steady-
state boundary conditions.

Szczecinsky and Rychter �3� and Sendyka and Filipczyk �4�
extended the use of this model by assuming quasi-steady-state
solutions for a varying pressure in the venturi. The results showed
instantaneous and integrated air fuel ratios that were much leaner
than those seen in real engines. Experiments have shown that the
pulsating nature of airflow produces a mixture enrichment, as re-
ported by Moss �18�. In addition, Bolt et al. �19� studied the effect

of fuel properties on the amounts of fuel delivered by the carbu-
retor by looking at the change in the discharge coefficient of re-
striction elements.

Two Phase Flow in Small Passages. The mixed airflow and
fuel flow in the carburetor passages has been greatly simplified in
previous models due to the complexity of the processes of two-
phase flow. The models cited above assumed the homogeneous
model for the two-phase flow as described by Wallis �20�. Visu-
alization experiments conducted by Oya �21� suggested that very
different two-phase flow regimes may occur in carburetor pas-
sages, greatly differing from a homogeneous case.

Two-phase flow regimes are important since they are needed to
understand the most appropriate pressure drop model for the char-
acteristics of the flow. Two-phase flow pressure drop correlations
have been developed for long pipes and with diameters much
larger than those typically found in carburetors. Oya �22� recog-
nized this lack of appropriate models and developed empirical
pressure drop correlations for small pipes. Measurements of the
amounts of air flow through airbleed systems was performed by
Hosho �23�, but only for average values over an entire engine
cycle. The reported results consisted of volumetric fractions where
airflow was around four times the fuel flow.

Steady-State Model

General Equations. The general approach used here to create
and solve a carburetor model is to solve for airflow first, which
then sets the boundary conditions for the fuel flow network. A
schematic of the flow network is shown in Fig. 2.

Venturi. The air mass flow rate ṁa through the carburetor ven-
turi can be modeled using the equations for a compressible nozzle
given by

ṁa = CD,tAt��2�a0�P�,0 − P�,t� �1�

where CD,t is the discharge coefficient based on the throat area
At ,�a0 is the density of air at atmospheric conditions, P�,0 is the
total pressure at the inlet of the venturi, and P�,t is the static
pressure at the throat �1�. � accounts for the compressible effects

� = � ��/�� − 1����P�,0/P�,t�2/� − �P�,0/P�,t���+1�/��
1 − P�,0/P�,t

�1/2

�2�

where � is the isentropic coefficient of air.

Fuel Bowl. Assuming that the fuel level in the fuel bowl is kept
constant, the pressure at the bottom of the fuel bowl Pfb,b is given
by

Fig. 1 Main systems in carburetor for small engines

Fig. 2 Schematic of carburetor as flow network
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Pfb,b = Pfb,t + � fghfb �3�

where Pfb,t is the pressure over the fuel level �which depends on
the configuration of the carburetor�, � f is the fuel density, g is the
gravitational acceleration constant, and hfb is the fuel level.

Main Fuel Orifice. Fuel flow ṁf through a calibrated orifice can
be modeled by

ṁf = CD,mjAmj
�2� f�Pfb,b − Pmj� �4�

where CD,mj is the discharge coefficient based on the orifice area
Amj, and Pmj is the pressure after the orifice. The discharge coef-
ficient is obtained experimentally �e.g., see �2,16��.

Single-Phase Flow in Emulsion Tube. Only fuel flows through
the lower section of the emulsion tube. The single-phase flow in
this section of the emulsion tube can be modeled using momen-
tum conservation in a circular pipe, taking into account pressure
losses due to friction and sudden expansions �24�. It is modeled as

Pmj

� f
+

�mj
2

2
=

Pet,0

� f
+ gLet,0 +

�et,0
2

2
�1 + f

Let,0

Det
� + km

�mj
2

2
�5�

where �mj is the velocity in the main fuel orifice, Pet,0 is the
pressure at the end of the single-phase part of the fuel tube, Let,0 is
the length of this tube, Det its diameter, f is the Darcy friction
factor, and km is the pressure loss coefficient for sudden
expansion.

Fuel Well Surrounding the Emulsion Tube. The main function
of the fuel well under steady-state conditions is to control the
covering or exposure of the emulsion tube holes in order to allow
air to bleed through this system. The fuel level hfw in the well can
be found from

Pmj

�f
+

�mj
2

2
=

Pfw

�f
+ ghfw �6�

where Pfw is the pressure on top of the fuel well level.

Emulsion Tube Holes. The emulsion tube has several levels of
holes. These holes are drilled in sets of 2 or 4. They divide the
emulsion tube into sections along the flow direction where differ-
ent amounts of air travel with the fuel flow. When a level of holes
in the emulsion tube is exposed, air can enter the emulsion tube if
the pressure of the air in the fuel well is higher than the static
pressure inside the emulsion tube. The airflow ṁa−ab,i through the
ith level of emulsion tube holes is given by

ṁa−ab,i = CD−ab,iAab,i�2�a�Pfw − �Pet,i −
4�

Dab,i
�	 �7�

where CD−ab,i is the discharge coefficient for the emulsion tube
hole based on the area Aab,i , Dab,i is the diameter of the hole, and
� is the surface tension of the fuel. The airflow in each segment of
the emulsion tube is found through mass balance equations,

ṁa−ab,i = ṁa−et,i + ṁet−a,i−1 �8�

where the mass flow through the segment i of the emulsion tube,
ṁa−ab,i, is equal to the mass flow through the previous segment
and the air drawn through the air-bleed hole. Finally, the total
airflow through the air-bleed system is the sum of the air through
all the levels of air-bleed holes,

ṁa−ab = 

i=1

levels

ṁa−ab,i �9�

Two-Phase Flow in Emulsion Tube. The pressure drop �P2�

in the ith segment of the emulsion tube can be described as

Pet,i−1 − Pet,i = �P2��ṁf,ṁa−et,i� �10�

where Pet,i−1 is the pressure at the beginning of this segment, Pet,i
the pressure at the end of the segment. A detailed description of
this function will be given below.

Air Orifice. Airflow through the air-bleed system is restricted
by an orifice located at the inlet of the venturi. Very little air flows
through this system, so it can be described by the equation of
incompressible nozzle

ṁa−ab = CD,ajAaj
�2�a�P�,in − Paj� �11�

where CD,aj is the discharge coefficient based on the orifice area
Aaj and Paj is the pressure after the orifice.

Air Path. The flow through the air-bleed system can be modeled
as incompressible viscous pipe flow with friction losses and ex-
pansion losses

Paj

�a
+

�aj
2

2
=

Pfw

�a
+

�ap
2

2
�1 + f

Lap

Dap
+ 
 km,ap� + km

�aj
2

2
�12�

where �ap is the mean velocity in the air-bleed system whose
length and diameter are Lap and Dap, and km,ap is the pressure loss
coefficient for bends and expansions in the system.

Details of Two-Phase Pressure Drop. Characterizing the pres-
sure drop in the emulsion tube where a two-phase flow of air and
fuel is created requires the determination of the effect of density
change and friction losses. The homogeneous model was previ-
ously used by Harrington �25�, Szczecinsky �3�, Shinoda et al.
�16�, and Furuyama �17�. These models assume that the airflow
and fuel flow create a mixture of homogeneous properties, so a
mean density and viscosity are adequate to characterize the flow.
Figure 3 shows a sample of different two-phase flow configura-
tions that can be seen in a small pipe of similar dimensions to
those found in carburetors, as a function of airflow and fuel flow
�qa and qf, respectively�. These visualization experiments, similar
to those of Oya �21�, indicate that the actual flows feature differ-
ent two-phase flow regimes with bubbles of different sizes, de-
pending on the combination of fuel flow and airflow: at low air-
flow, the bubbles are of small size and lenticular in shape; at
higher airflow bubbles grow and stretch, becoming churn flow.
The impact of fuel flow is less apparent, since the bubble sizes
and structure do not change so much with fuel flow.

In order to assess the effect of two-phase flow in the emulsion
tube, the pressure drop due to friction and to mixture-density
change in a short pipe �10 cm long, 0.6 cm dia� were calculated
with the homogeneous model as a function of volumetric fuel flow
and airflow, as shown in Fig. 4. It can be noted that friction losses
are two orders of magnitude smaller than the density term.

These predictions were compared to the actual pressure drops
obtained in an experimental setup as depicted in Fig. 5. Fuel was
pumped into a clear vertical pipe of 0.6 cm in diameter. The liquid

Fig. 3 Two-phase flow regimes in a small pipe
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used was mineral spirits, which has similar density and viscosity
to gasoline, but lower volatility. House air was brought into the
clear pipe through a mixer, which was designed as a manifold that
mimicked the lateral holes in the emulsion tube. The test section
was placed five pipe diameters above the mixer. An electronic
pressure transducer was used to measure the pressure difference
between pressure taps located 10 cm apart.

Figure 6 shows the contours that approximate the experimental
results. When compared to the predictions by the homogeneous
model �Fig. 4�, it can be noted that they disagree in magnitudes
and trends. For a range of airflow from 0 to �0.15 L/min, the
pressure drop is a function of airflow only, which resembles the
visualization experiments where the features of the two-phase
flow, such as bubble sizes, change with airflow and not with fuel
flow. This trend changes with higher airflow, where an increase in

fuel flow increases the pressure drop.
An empirical correlation was fitted to the data through a

second-order linear regression that gave an agreement of R2

=0.92. The correlation is shown in Eq. �13�, and its comparison
with the experimental values is shown in Fig. 7

dP

dL
= 5.66�103� + 3.70�106�ṁf + 1.51�109�ṁf

2 − 1.34�109�ṁa

+ 8.31�1013�ṁa
2 �13�

The pressure drop in the two-phase part of the emulsion tube
�Eq. �10�� relates to this correlation by

�P2��ṁf,ṁa−et,i� =
dP

dL
Let,i �14�

Implementation in EES and Experimental Validation. The
model was implemented in the Engineering Equation Solver
�EES� �26�, with configurations for one, two, or three levels of
holes in the emulsion tube. Figure 8 shows the prediction of fuel
flow as function of airflow through the venturi in the configuration
of one level of emulsion tube holes for a range of inlet air velocity
from 5 to 30 m/s. Figure 9 shows the fuel level in the fuel well.
Several features can be found in these plots:

• There is a minimum air velocity required to overcome the
hydrostatic pressure difference between the fuel bowl and
the venturi throat.

• When an emulsion hole is exposed, it produces a sudden
jump in fuel flow as the pressure drop in the upper segment
of the emulsion tube is decreased by the two-phase flow.
Such an effect was reported by Shinoda et al. �16�. The

Fig. 4 Lines of constant gravitational and frictional pressure
change for a short pipe, using the homogeneous model plotted
versus airflow and fuel flow

Fig. 5 Experimental setup for emulsion tube measurements

Fig. 6 Pressure contours derived from experiments for two-
hole emulsion tube

Fig. 7 Comparison of predicted and correlated data using the
empirical correlation derived from data in this study
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difference between the two-phase flow models �homoge-
neous model and empirical correlation� is indicated by a
smaller jump in fuel flow and a smoother transition in fuel
level predicted by the empirical two-phase pressure drop
correlation compared to the predictions from the homoge-
neous model.

• There is a wide range of air velocities where fuel flow in-
creases linearly with airflow in the venturi.

• At higher airflows, compressibility effects start to be notice-
able as a similar increase in pressure drop in the venturi
draws less air mass due to its compressibility.

Implementation of the model with three levels of emulsion
holes allows it to predict the flow through each of the emulsion
hole levels and the effect on the fuel flow, as shown in Fig. 10,
where the same features described above can be found.

The steady-state model was validated experimentally by mea-
suring the fuel flow and airflow in a commercial carburetor �Ni-
kki�. Figure 11 shows the experimental setup. House air was used

to create a low-pressure zone by means of a flow amplifier. This
low pressure drove air from the laboratory conditions to pass
through a commercial carburetor. The emulsion tube in the carbu-
retor was a brass tube of 0.5 cm in diameter and 4 cm in length,
with three levels of holes. A pump was used to supply mineral
spirits to the float valve of the carburetor at approximately the
same pressure that would be generated by an elevated fuel tank.
The appropriate specification of the boundary conditions of the
flow network required measurements of the inlet air velocity, the
pressure at the inlet of the venturi, the pressure difference between
the inlet and the outlet of the carburetor, and the fuel level inside
the fuel bowl. Once the airflow was set, the system was allowed to
reach a steady-state condition �e.g., constant fuel flow�. At this
moment, the measurements of the fuel flow were registered.

Figure 12 shows the comparison between the experiments and
the prediction from the steady-state model. In this figure, the solid
line represents the prediction of the model, and the circles the
experimental results. The uncertainty propagation of the predicted
fuel flow, based on the measurements of the boundary conditions,
is shown as gray lines. The uncertainty of the measurements is
±2 cm3/min. These results indicate that the model is successful at
capturing all the metering elements and the pressure drop in the
emulsion tube. It is interesting to note that the model captured the
sudden jump after the air-bleed system starts to work and the fuel
flow at higher velocities when the two-phase mixture is formed in
the emulsion tube. This indicates that although the correlation for
two-phase flow was derived for a limited geometry, it scaled well
for a smaller pipe. Future work will deal with the derivation of a
more general correlation that takes into account a larger range of
sizes of small diameter pipes.

Fig. 8 Fuel flow versus airflow

Fig. 9 Experimental setup for carburetor fuel flow and airflow

Fig. 10 Experimental validation of carburetor model under
steady-state flow

Fig. 11 Fuel height in fuel well versus airflow

Fig. 12 Airflow in emulsion tube versus venturi airflow, for an
emulsion tube with three levels of holes
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Sensitivity Analysis. The steady-state model can be used to
study the effect of individual parameters �geometry and fuel prop-
erties� on the fuel flow by calculating the relative sensitivity �i
defined as

�i =
�ṁf

�ki

ki

ṁf

�15�

where ki is the parameter of interest �27�. For an air velocity of
15 m/s , �i was calculated for the parameters shown in Fig. 13. It
is apparent that the discharge coefficient Cd of the main fuel ori-
fice and the diameters of the main fuel orifice and venturi throat
are the factors that cause the greatest impact on fuel flow. The
negative value of the relative sensitivity of the venturi throat di-
ameter indicates that an increase in diameter would reduce the
fuel flow, since the pressure at the throat would be higher. The low
sensitivity of parameters that affect the two-phase flow indicate
that these elements are more important under transient conditions
�e.g., engine operation conditions� than under steady-state condi-
tions.

Quasi-Steady-State Approximation. The steady-state model
may be extended to a dynamic one by assuming a quasi-steady-
state approximation, as was done in the previous models
�2–4,16,17�. Assuming a pressure in the inlet of the venturi that
changes with time, “instantaneous” quasi-steady-state equations
can be solved. Figure 14 shows an idealized sinusoidal pressure
change with time and the air velocity at the inlet of the venturi. It
shows fuel flow and airflow through the air-bleed system, which
correspond to these changes in pressure. It can be noted that both
airflow and fuel flow closely follow the pressure variation. In
these plots, the horizontal axis is an angle �, since the nature of
the quasi-steady model makes the solution independent from the
frequency of the pressure change.

The drawbacks of the quasi-steady-state model are that inertial
effects are not seen, and an integrated air-fuel ratio remains con-
stant independent of the frequency of the pressure change.

Unsteady Model.

Equations for Unsteady Flow. In order to extend the time re-
sponse characteristics of the model, differential equations were
derived for pipe flow and the fuel well. The mass balance for
instantaneous one-dimensional Navier-Stokes equations for fuel
flow in the single-phase part of the emulsion tube is given by

��

�t
+ �

�u

�x
= 0 �16�

For incompressible flow, it reduces to

�
�u

�x
= 0 �17�

Using this result, the momentum conservation equation can be
simplified to

�u

�t
+

1

�

�P

�x
+

4	w

�D
+ g = 0 �18�

where 	w is the shear stress on the wall and D is the tube diameter.
By using the Darcy friction factor f , defined as f =8	w / ��u2�, Eq.
�18� may be written as

�u

�t
+

1

�

�P

�x
+ f

1

D

u2

2
+ g = 0 �19�

An approximation of this equation applied to the single-phase
part of the emulsion tube can be written as

�uet,0

�t
+

1

� f

Pmj − Pet,0

Let,0
+ f

1

Det

uet,0
2

2
+ g = 0 �20�

This differential equation replaces the algebraic equation �5� for
pressure drop in the single-phase-flow segment of the emulsion
tube. Equation �20� requires the term �uet,0 /�t to be integrated in
order to yield the instantaneous velocity uet,0. A similar equation
could be written for the air system, but it was not done consider-
ing that the inertia of the fuel is three orders of magnitude larger
than the inertia of air.

Implementation in EES. The implementation of the unsteady
model consisted of solving an initial-value problem for a differ-
ential equation with simultaneous nonlinear equations over time.
The model was implemented in EES. Fuel flow is shown in Fig.
15 and the fuel level in the fuel well in Fig. 16, for hypothetical
sinusoidal pressure changes at 900, 1800, and 3600 rpm. In these
plots, the horizontal axis is time instead of angle, as in Fig. 14.

Some important differences between the quasi-steady model
and unsteady model include the following:

Fig. 13 Relative sensitivity analysis of fuel flow for different
geometric and physical parameters

Fig. 14 Quasi-steady-state model; „a… Idealized pressure at
venturi throat and air velocity at venturi inlet and „b… Instanta-
neous fuel flow and airflow
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• There is a delay between pressure changes and fuel flow,
which is more noticeable with increasing frequency.

• For the quasi-steady-state model, there are some periods of
time where pressure drop in the venturi is not enough to
drive fuel flow. This effect is eliminated with the unsteady
model, since fuel has enough inertia to keep flowing even at
very low quantities. With increasing frequency, the inertia
overcomes these periods, so more fuel is drawn at the low-
pressure difference periods of the venturi.

• The periods of time of low pressure drop in the venturi are
also apparent in the fuel level in the fuel well, where the
peak level increases to initial values for the quasi-steady
model but decreases with increasing engine speed in the
dynamic model.

• The peak in fuel flow is decreased, also due to the same
inertial effect.

As expected, at lower frequencies �900 rpm� the unsteady
model predictions approach those of the steady-state model since
the inertial terms play a less important role when the pressure
conditions change slowly.

Finally, the integrated air-fuel ratio was calculated and are
shown in Fig. 17. A notable fuel-enrichment effect with increasing
frequency is apparent, with the air-fuel ratio going from an aver-
age of 12.3 to 11.5. This enrichment due to pulsating flow com-
pared to steady flow was reported by Moss �18�.

Conclusions
The major contribution of the present work is the detailed

implementation of the equations involved in dynamic fuel flow for
a complex flow network that represents a carburetor for small
engines. Special detail was put into the correct modeling of two-
phase flow in the emulsion tube based on the comparison of the
homogeneous model and an empirical correlation for small pipes
in carburetors. Although the development of a correlation for
small pipes was based on a limited geometry, the experimental
results of the steady-state model showed that it was appropriate
for the characterization of the emulsion tube inside a real carbu-
retor. Future work will establish a more general description of the
pressure drop in a larger range of pipe diameters and lengths.

Fig. 15 Instantaneous fuel flow for changing venturi pressure
at 900, 1800, and 3600 rpm Fig. 16 Instantaneous fuel level in fuel well for changing ven-

turi pressure at 900, 1800, and 3600 rpm
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The implementation of partial differential equations to model
unsteady flow in single-phase pipes expands the previous models,
now allowing the model to take into account inertial terms that
were shown to fuel enrich the delivered mixture.

Extensions of this work will consist of performing the sensitiv-
ity analysis on the unsteady model, using measurements from real
engines to verify the dynamic model and coupling the model with
engine-performance prediction software.
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Nomenclature
A 
 cross-sectional area, m2

CD 
 discharge coefficient
D 
 diameter, m
f 
 friction factor
g 
 gravitational constant, m/s2

h 
 height, m

k 
 parameter for sensitivity analysis
km 
 pressure loss coefficient
L 
 pipe length, m
ṁ 
 mass flow rate, kg/s
P 
 pressure, N/m2

v 
 average velocity, m/s

Greek Symbols
� 
 relative sensitivity
� 
 isentropic coefficient
� 
 dynamic viscosity, N s/m2

� 
 compressibility factor
� 
 density, kg/m3

� 
 surface tension, N/m

Subscripts
a 
 air

ab 
 air bleed
aj 
 air orifice
ap 
 air passages
et 
 emulsion tube
f 
 fuel

fb 
 fuel reservoir
fw 
 fuel well

i 
 element of a series
in 
 venturi inlet

mj 
 main fuel orifice
t 
 venturi throat
v 
 venturi
0 
 total inlet conditions
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Centrifugal Flow in a Rotor-Stator
Cavity
The present work considers the turbulent flow inside an annular rotor-stator cavity with
and without centrifugal throughflow. Extensive measurements performed using a two-
component laser-Doppler anemometer technique, and pressure transducers are compared
to numerical predictions based on one-point statistical modeling using a low-Reynolds-
number second-order full-stress transport closure. A study of the flow control parameters
is performed, and, for the first time, a better insight into the transition from Batchelor to
Stewartson types of flow is gained from this study. The advanced second-order model is
confirmed to be the adequate level of closure to describe such complex
flows. �DOI: 10.1115/1.1949645�

1 Introduction
The study of the flow in a rotor-stator cavity has significant

relevance to many configurations encountered in turbomachinery.
There have been many fundamental experimental and theoretical
works �1–3� of the flow in a closed rotor-stator system. Neverthe-
less, when a centrifugal throughflow is added, relatively few
works have been published. Daily et al. �4� measured the average
velocity profiles and put forward the importance of the outflow on
the development of the Ekman layer and on the values of the
entrainment coefficient of the fluid. Firouzian et al. �5� performed
velocity and pressure measurements for a wide range of flow rates
and rotational speeds. They tested also the effect of inlet geometry
on the flow between two disks enclosed by a peripheral shroud.
Numerically, Chew �6� was the first to study the flow inside a
rotor-stator cavity with centrifugal throughflow using a low-
Reynolds-number k-� model. Chew and Vaughan �7� studied this
type of flow with and without imposed throughflow with a model
based on a mixing length hypothesis inside the whole cavity. Their
results were quite comparable to the experimental data of Daily
and Nece �1� and Daily et al. �4� apart from a relaminarization
area close to the rotating axis. The model of Iacovides and Theo-
fanopoulos �8� used an algebraic modeling of the Reynolds stress
tensor in the fully developed turbulence area and mixing length
hypothesis near the wall. It provided good results in the case of a
rotor-stator flow with and without throughflow, but some discrep-
ancies remain on the Ekman layer thickness and the rotation rate
in the central area. Iacovides and Toumpanakis �9� tested four
turbulence models and showed, especially, that the Reynolds
stress model was an appropriate level of closure to describe rotor-
stator flows in a closed cavity. Schiestel et al. �10� have used both
a low-Reynolds-number k-� model near the walls and an algebraic
stress model �ASM� in the core of the flow. Second-order infor-
mation was found to be necessary in turbulence closure to get a
sufficient degree of universality in predicting rapidly rotating
flows. Later Elena and Schiestel �11� also proposed some numeri-
cal calculations of rotating flows based on a zonal approach. They
have also used a new modeling of the Reynolds stress tensors
derived from the Launder and Tselepidakis �12� one. It provides a
better prediction than the simpler model of Hanjalic and Launder
�13�. But there also, the authors emphasize the too high laminar-
ization of the flow in comparison to the expected results. Iacov-
ides et al. �14� tested two low-Reynolds-number models: a classi-
cal k-� model and a modified Reynolds stress �RSM� model,
which takes into account the effect of the rotation. More recently,

Poncet et al. �15� compared pressure and velocities measurements
to numerical predictions based on an improved version of the
Reynolds stress modeling of Elena and Schiestel �16�. All the
comparisons were in excellent agreement for the mean and turbu-
lent fields. The RSM model is then, indeed, the adequate level of
closure compared to the classical k-� model to describe the turbu-
lent flow with or without an imposed in- or outflow.

The present study puts forward a numerical approach, which is
a valuable tool to predict the mean flow structure and the turbulent
intensities in a rotor-stator system with outward throughflow. If
the experimental approach and the DNS are both important routes
for detailed investigations, then building an experimental rig re-
mains very expensive and the DNS are limited at present time to
small rotation rates �Reynolds number not higher than 4�105

�17� in practice�. Then, the present RSM turbulence model still
appears as a valuable tool for extending the range of geometrical
and physical parameters under consideration and useful for indus-
trial design. The predictions are found here in excellent agreement
with the velocity and pressure measurements.

2 Experimental Setup

2.1 Apparatus. The cavity sketched in Fig. 1 is composed of
a fixed disk �the stator� and a smooth rotating disk �the rotor�. A
fixed shroud encloses the cavity. The rotor and the central hub
attached to it rotate at the uniform angular velocity �.

The mean flow is mainly governed by three control parameters:
the aspect ratio G, the Reynolds number Re based on the outer
radius of the rotor, and the flow-rate coefficient Cw �2�, defined as
follows:

G =
h

R2
Re =

�R2
2

�
Cw =

Q

�R2

where � is the kinematic viscosity of water, R1=38 mm and R2
=250 mm, respectively, the inner and outer radii of the rotating
disk, d=55 mm and R3=253 mm the central opening and the
outer radius of the cavity, and Q the imposed throughflow. The
height of the cavity h can vary between 0 and 12 mm. The radial
gap e=R3−R2 is fixed to 3 mm.

A pump allows one to impose a variable throughflow Q. The
rotation of the disk is produced by a 5.5 kW electric servomotor.
The accuracy on the measurement of the angular velocity and on
the flux is better than 1%. In order to avoid cavitation effects, the
cavity is maintained at rest at a pressure of 2 bar using a tank-
buffer. The temperature is also maintained constant �23 °C� using
a heat exchanger, which allows one to remove the heat produced
by friction in order to keep constant the density and the kinematic
viscosity of water.
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2.2 Experimental Measurement Techniques. The measure-
ments are performed by means of a two-component laser-Doppler
anemometer �LDA� and also by pressure transducers. The LDA
technique is used to measure, from above the fixed disk, the mean
radial Vr and tangential V� velocities as well as the associated
Reynolds stress tensor components R11

* =vr�
2 / ��r�2 , R12

*

=vr�v�� / ��r�2 , R22
* =v��

2 / ��r�2 in a vertical plane �r ,z� at a given
azimuthal angle �vr� and v�� are the fluctuating parts of the radial
and tangential velocity components and r is the radial location�.
This method is based on the accurate measurement of the Doppler
shift of laser light scattered by small particles �Optimage PIV
Seeding Powder, 30 �m� carried along with the fluid. About 5000
validated data are necessary to obtain the statistical convergence
of the measurements. Its main defect is due to the size of the
probe volume �0.8 mm in the axial direction�, which is large com-
pared to the boundary layer thicknesses and for small values of
the interdisk space h. Its main qualities are its non intrusive nature
and its robustness. A three-dimensional 3D traverse system en-
ables the LDA to move in the three directions with accuracy �0.01
mm�.

Pressure is measured by six piezoresistive transducers, which
are highly accurate �0.05% in the range 10–40 °C� and combine
both pressure sensors and temperature electronic compensations.
Nevertheless, according to the experimental conditions, the accu-
racy on the pressure is about 5%. They are fixed on the stator at
the following radial locations 0.093, 0.11, 0.14, 0.17, 0.2, and 0.23
m disposed along two rows. Previous pressure measurements by
embedded pressure gages �18� showed that the pressure on the
rotor and the one on the stator at the same radius are, in fact,
identical within 2.5% accuracy. This is a direct consequence of the
Taylor-Proudman theorem, which forbids axial gradients in rap-
idly rotating flows.

3 Statistical Modeling

3.1 Differential Reynolds Stress Model. The flow studied
here presents several complexities �high rotation rate, imposed
through-flow, wall effects, transitional zones�, which are a severe
test for turbulence modeling methods. Our approach is based on
one-point statistical modeling using a low-Reynolds-number
second-order full stress transport closure derived from the Laun-
der and Tselepidakis �12� model and sensitized to rotation effects
�16�. This approach allows for a detailed description of near-wall

turbulence and is free from any eddy viscosity hypothesis. The
general equation for the Reynolds stress tensor Rij can be written

dRij

dt
= Pij + Dij + �ij − �ij + Tij , �1�

where Pij, Dij, �ij, �ij, and Tij, respectively, denote the produc-
tion, diffusion, pressure-strain correlation, dissipation, and extra
terms. The diffusion term Dij is split into two parts: a turbulent
diffusion Dij

T , which is interpreted as the diffusion due to both
velocity and pressure fluctuations �19�, and a viscous diffusion
Dij

� , which cannot be neglected in the low-Reynolds-number re-
gion. In a classical way, the pressure-strain correlation term �ij
can be decomposed as follows:

�ij = �ij
�1� + �ij

�2� + �ij
�w� �2�

�ij
�1� is interpreted as a slow nonlinear return to isotropy and mod-

eled as a quadratic development in the stress anisotropy tensor,
with coefficients sensitized to the invariants of anisotropy. This
term is damped near the wall. The linear rapid part �ij

�2� includes
cubic terms. A wall correction �ij

�w� is applied to the linear part,
which is modeled using the Gibson and Launder hypothesis �20�
with a strongly reduced numerical coefficient. However, the
widely adopted length scale k3/2�−1 is replaced by the length scale
of the fluctuations normal to the wall. The viscous dissipation
tensor has been modeled in order to conform with the wall limits
obtained from Taylor series expansions of the fluctuating veloci-
ties �21�. The extra term Tij accounts for implicit effects of the
rotation on the turbulence field. Indeed, high-speed rotation pro-
duces indirect effects on the turbulence field that are not modeled
in usual closures, even in second-order closures. These effects
modify the structure of the turbulence eddies in a complex manner
that can be evidenced in two-point statistics �22�. A practical ex-
tension for one-point closures, to approximate the effects, has
been developed in �23�. It consists of additional terms in the stress
transport equations that act only when the flow is subjected to
strong rotation. More precisely, the pressure-strain correlation is
sensitized to the Reynolds and Cambon structure tensor, and a
spectral jamming term is added that enhances bidimensionality.
The effect of blocking of the spectral transfer is also included.
These terms are fully explained and detailed analytically in �23�.

3.2 Numerical Method. The computational procedure is
based on a finite-volume method using staggered grids for mean

Fig. 1 Experimental setup and notations
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velocity components with axisymmetry hypothesis in the mean. A
140�80 mesh in the �r ,z� frame proved to be sufficient in most
cases �Re	1.038�106� considered in the present work to get
grid-independent solutions. It has been verified that the numerical
solution is, indeed, accurate within 1.5% �maximum error for ve-
locity and stress components� compared to the solution obtained
on a mesh using twice the number of nodes. Nevertheless, a more
refined mesh 200�100 is necessary for the cases with Re=4.15
�106. About 20,000 iterations �10 hr� on the NEC SX-5 �IDRIS,
Orsay, France� are necessary to obtain the numerical convergence
of the calculation. In order to overcome stability problems, several
stabilizing techniques are introduced in the numerical procedure,
such as those proposed by Huang and Leschziner �24�. Also, the
stress component equations are solved using matrix block tridi-
agonal solution to enhance stability using nonstaggered grids.

3.3 Boundary Conditions. At the wall, all the variables are
set to zero except for the tangential velocity V�, which is set to �r
on rotating walls and zero on stationary walls. At the inlet and
outlet areas, it is supposed that V� varies linearly from zero on the
stationary wall up to �r on the rotating wall. When a throughflow
is enforced, a parabolic profile is then imposed for the axial ve-
locity Vz at the cavity inlet, with a given low level of turbulence
intensity. In the outflow section, the pressure is fixed, whereas the
derivatives for all the other independent quantities are set to zero
if the fluid leaves the cavity, and fixed external values are imposed
if the fluid reenters the cavity.

4 Results and Discussion

4.1 Model Performances. In order to show the detailed per-
formances of the RSM model, a typical particular case has been
considered: Re=106 , G=0.036, Cw=5929 at the dimensionless
radial location r*=r /R2=0.56 and the mean and turbulent fields
have been studied. Figures 2 and 3 show, respectively, the dimen-
sionless mean radial V�

*=V� / ��r� and tangential Vr
*=Vr / ��r� ve-

locity profiles and the associated Reynolds stress tensors along the
axial direction z*=z /h. The model predictions are in very good
agreement with the experimental data. Considering the narrow
gap between the disks, the probe integration leads to underesti-
mated velocities and stresses �Figs. 2 and 3� very near the wall.
Previous works �16,15� have shown that this level of closure is the
most appropriate to describe rotating flows with or without
throughflow �centripetal or centrifugal�, while the classical k-�
model, which is blind to any rotation effect, presents serious de-
ficiencies. So, the second-order model can now be confidently
used to carry parametric studies even for high values of the flow
rate, as in the present case.

4.2 Pressure Distributions. We performed pressure measure-
ments by means of six pressure transducers located on the stator
along two rows because of geometrical constraints. We choose to
take as a reference the pressure measured at the outer radial posi-
tion r*=0.92 and define the following pressure coefficient:
Cp

*�r*�= P*�r*�− P*�0.92�. The dimensionless pressure P* is given
by: P*=2P / �
�2R2

2�, where 
 is the density of water and P the

Fig. 2 Mean velocity profiles for Re=106, G=0.036, Cw=5929
at r*=0.56: „-… the RSM model and „�… the experimental data

Fig. 3 Axial profiles of the Reynolds stress tensors for Re=106, G
=0.036, Cw=5929 at r*=0.56: „-… the RSM model and „�… the experimental
data

Journal of Fluids Engineering JULY 2005, Vol. 127 / 789

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



pressure. In Figs. 4 and 5, the pressure coefficient is plotted versus
the dimensionless radial position for Re=4.15�106 and two val-
ues of the aspect ratio. As expected, the pressure decreases toward
the center of the cavity; Cp

* is then always negative. At a given
radius and for this Reynolds number, it can be observed that Cp

*

decreases for increasing values of the flow rate, which is contrary
to the case with a centripetal throughflow �25�. Note that, in the
cases of weaker Reynolds numbers, the pressure coefficient is
very close to zero.

The RSM model predicts very well the radial pressure gradient
for both aspect ratios compared to the experimental data, consid-
ering that Cp

* is a very sensitive check to test numerical calcula-
tions and that the maximum error between the experimental data
and the numerical predictions is not higher than 1 mbar, which is
within expected experimental accuracy. Nevertheless, the numeri-
cal results seem to depend on the interdisk space, whereas it is not
the case experimentally. Viscous terms at the wall are probably
involved.

4.3 Mean Velocity Profiles. The aim of this section is to de-
scribe the transition between a Batchelor-type flow with two

boundary layers separated by a central rotating core and a
Stewartson-type flow with only one boundary layer on the rotor
according to the flow control parameters: the Reynolds number,
flow rate, and aspect ratio. The radial locations considered in Figs.
6–9 are chosen in order to show more clearly this transition.

4.3.1 Effect of the Reynolds Number. For a given centrifugal
flow rate Cw=5159 and at a given radial position r*=0.68, Fig. 6
shows the transition between a Stewartson- and Batchelor-type
flow for increasing values of the Reynolds number. Until Re
=1.038�106, there is only one boundary layer on the rotating
disk. Apart from the rotor boundary layer, the tangential velocity
is close to zero. The radial velocity is maximum in this layer and
always positive. That denotes a Stewartson-type flow. For greater
Reynolds numbers, the flow is of Batchelor type, with two bound-
ary layers: a centripetal boundary layer on the stator �Bödewadt
layer� and a centrifugal one on the rotor �Ekman layer� separated
by a central rotating core. Note that, for these three Reynolds
numbers, there is an excellent agreement between the experimen-
tal data and numerical results.

4.3.2 Effect of the Flow Rate. When a weak centrifugal
throughflow is imposed �Fig. 7�b��, the flow keeps the same char-
acteristics as in a closed cavity �Fig. 7�a��: two boundary layers
and a central rotating core, that is known as a Batchelor-type flow.
Note that the Batchelor-type profile can appear only if the
Bödewadt layer is centripetal. The tangential velocity decreases,
but we still observe these two boundary layers. By increasing the
flow rate, the central core disappears. The profiles for the tangen-
tial velocity are then Stewartson profiles �Fig. 7�d��, it means that
the tangential velocity is zero apart from the Ekman layer. The
radial velocity is then always positive. The limit case between
Batchelor and Stewartson profiles is presented in Fig. 7�c�.

4.3.3 Effect of the Aspect Ratio. Figures 8 and 9 display the
velocity profiles corresponding to the case Re=1.038�106 , Cw
=5159 for two aspect ratios and at three radial positions, and Fig.
10 brings out the corresponding streamlines.

Depending on the radial location �Figs. 8 and 9�, the flow be-
longs to the Batchelor- or Stewartson-type flow. For r*	0.68, the
flow is a Stewartson-type flow with only one boundary layer on
the rotor. The core disappeared, and the radial velocity �which is
always positive� becomes significant compared to the tangential
velocity; the flow is then fully centrifugal. For r*�0.68, the flow
switches to Batchelor type with two separated boundary layers.
The central core reappears, and the Bödewadt layer becomes
centripetal.

Figure 9 brings out the main defect of the LDA technique, too.
When the interdisk space is small �h=3 mm�, as compared to the
probe volume in the axial direction �0.8 mm�, the measurements
failed indeed. The integration of the mean radial velocity profile
�Fig. 9�a�� calculated by the model is in agreement with the im-
posed centrifugal throughflow rate, whereas it is not the case for
the experimental data. For G=0.012�h=3 mm�, the experimental
values underestimate the radial and tangential velocities because
these are integrated values on a too big probe volume compared to
the interdisk space. It was also difficult sometimes to measure
very close to the walls for this aspect ratio.

According to Figs. 9�a� and 10�b�, the flow is centrifugal in the
whole cavity for G=0.012. The mean radial velocity profile for
r*=0.44 gets closer to a Poiseuille-like profile.

4.4 Mean K-Curve. The predictions of the RSM model have
been validated against experimental data measured using the two-
component LDA. Poncet et al. �25� have shown, analytically, that
the entrainment coefficient K of the rotating fluid �the ratio be-
tween the tangential velocity in the middle of the interdisk space
and that of the disk at the same radius� can be correlated, in the
case of a centripetal throughflow, to a flow rate coefficient Cqr
=Q��r2 /��1/5 / �2�r3��0. In figure 11, several points deduced

Fig. 4 Radial pressure distribution for Re=4.15Ã106 and G
=0.036: „-… the RSM model and the experimental data for „�…

Cw=10317, „�… Cw=5159, „�… Cw=2579, „�… Cw=0

Fig. 5 Radial pressure distribution for Re=4.15Ã106 and G
=0.012: „-… the RSM model and the experimental data for „�…

Cw=10317, „�… Cw=5159, „�… Cw=2579, „�… Cw=0

790 / Vol. 127, JULY 2005 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 6 Mean velocity profiles for Cw=5159, G=0.036 at r*=0.68: „-… the RSM model and „�…

the experimental data for „a… Re=5.189Ã105, „b… Re=1.038Ã106, and „c… Re=4.15Ã106

Fig. 7 Mean velocity profiles for Re=4.15Ã106, G=0.036 at r*=0.44: „-… the RSM model and
„�… the experimental data for „a… Cw=0, „b… Cw=2579, „c… Cw=5159, and „d… Cw=10317
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Fig. 8 Mean velocity profiles for G=0.036, Re=1.038Ã106, Cw=5159 at „a… r*=0.44, „b… r*

=0.68, and „c… r*=0.92: „-… the RSM model and „�… the experimental data

Fig. 9 Mean velocity profiles for G=0.012, Re=1.038Ã106, Cw=5159 at „a… r*=0.44, „b… r*

=0.68, and „c… r*=0.92: „-… the RSM model and „�… the experimental data
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from the modeling results are plotted in a log-log representation
against the experimental data in the case of centrifugal through-
flows. We note that, for a Batchelor-type flow, K follows the ana-
lytical law determined by Poncet et al. �25� with −Cqr �contrary to
them, we consider here Cqr0 in the case of centrifugal through-
flows�

K = 2 � �− 5.9 � Cqr + 0.63�5/7 − 1 �3�

For a Stewartson-type flow, K decreases exponentianally with
increasing values of Cqr following the equation:

K = 0.032 + 0.32 � e−Cqr/0.028 �4�
Between these two types of flow, there is a transition zone. The

results are in good agreement, which means that the model pre-
dicts quite well the mean turbulent flow for both Batchelor and
Stewartson types of flow.

5 Conclusion
Turbulence modeling and measurements of the turbulent flow

in a rotor-stator cavity is a great challenge even more when a
centrifugal throughflow is imposed. In the present work, we have
compared second-order model predictions with new experimental
data for three values of the Reynolds number, two aspect ratios of
the cavity, and four flow rates. For weak throughflows, the flow
still keeps the characteristics of a closed cavity. In the case of a
strong centrifugal throughflow, we showed that the flow reverts to
Stewartson-type flow with only one boundary layer on the rotating
disk. For the first time, the transition from Batchelor to Stewartson
profiles has been characterized according to the flow control pa-
rameters and to the radial location. The RSM model, which is a
second-moment closure, proved to give a great improvement com-
pared to known results using simpler models. Because good
agreement with the measurements has been found in all the vari-
ous cases under consideration, it is confirmed that the RSM model
offers an adequate level of closure to describe the mean and the
turbulent fields in such type of flows.
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Limitations of Richardson
Extrapolation and Some Possible
Remedies
The origin of oscillatory convergence in finite difference methods is investigated. Fairly
simple implicit schemes are used to solve the steady one-dimensional convection-
diffusion equation with variable coefficients, and possible scenarios are shown that ex-
hibit the oscillatory convergence. Also, a manufactured solution to difference equations is
formulated that exhibits desired oscillatory behavior in grid convergence, with a varying
formal order of accuracy. This model-error equation is used to statistically assess the
performance of several methods of extrapolation. Alternative extrapolation schemes, such
as the deferred extrapolation to limit technique, to calculate the coefficients in the Taylor
series expansion of the error function are also considered. A new method is proposed that
is based on the extrapolation of approximate error, and is shown to be a viable alterna-
tive to other methods. This paper elucidates the problem of oscillatory convergence, and
brings a new perspective to the problem of estimating discretization error by optimizing
the information from a minimum number of calculations. �DOI: 10.1115/1.1949646�

1 Introduction
Richardson extrapolation �1,2� is a commonly used method for

quantifying the discretization errors in CFD �computational fluid
dynamics� applications in fluids engineering and heat transfer
problems. In the asymptotic range �i.e., for sufficiently small mesh
size h�, it is postulated �see Eq. �3.1��

� − �h = ahp �1.1�

where p is the apparent order of the numerical scheme used, � is
the extrapolated solution, and �h is the numerical solution with
mesh size h ; a is a coefficient independent of h, but may change
in space or time.

Richardson extrapolation uses calculations on multiple sets of
grids �see also Sec. 5� to calculate the extrapolated value of a
dependent variable to zero grid size, either using the theoretical
order of the scheme �on at least two grid levels� or via the appar-
ent or observed order that is calculated as part of the unknowns; in
the latter case, at least three sets of calculations are needed on
significantly different grid levels. The pros and cons of this
method have been the topic of many recent publications �3–10�. In
spite of it being a very useful tool for quantifying discretization
errors in CFD, there still remain major problems that need to be
addressed to advance the level of confidence that could be placed
in this method.

This paper addresses the problem of oscillatory convergence.
Several questions concerning the oscillatory convergence are �i�
Does oscillatory convergence occur? �ii� What happens in the
asymptotic range? Asymptotic range means the leading error term
dominates in the Taylor expansion of the error function. �iii� Is
Richardson extrapolation applicable to oscillatory converging
cases? �iv� How can one best make use of results from an oscil-
latory converging computation?

Answers to the above questions are sought in the following
order. First, some examples of oscillatory convergence are pre-
sented. Then, the existence of oscillatory is convergence exhibited
by constructing �manufacturing� schemes whose discretization er-

rors are forced to satisfy an oscillatory function when applied to a
simple convection-diffusion equation. Several modeled equations
are given to provide a large number of oscillatory samples. Dif-
ferent, viable methods are evaluated statistically, based on their
performance in predicting the exact solution in the limit as h
→0 using the sample data.

2 Examples of Oscillatory Convergence
We start by giving some examples of oscillatory convergence,

one from the solution of simple linear PDE

�u��x = ���x�x + �� �2.1�

and another from the solution of coupled nonlinear PDEs, namely,
Navier-Stokes equations for a fairly complex problem utilizing a
readily available commercial code. Here, ��x denotes differentia-
tion with respect to x.

As shown in the Appendix, one example is given by solving a
simple steady one-dimensional convection-diffusion equation.
The solutions ��� at x=0.5 with different grid sizes h are shown in
Fig. 1. Oscillatory convergence is seen to occur. The amplitudes
of the error change less and less when h approaches zero. In the
asymptotic range, as h→0 there seems to be at least three terms
of the same order of magnitude no matter how small the h value
is. More examples are given in the Appendix, where it is shown
that oscillatory convergence may also occur with nonmixed
schemes, i.e., central differencing.

Another example of oscillatory convergence can be observed in
Fig. 2. The solutions were calculated using the FLUENT computa-
tional fluid dynamics �CFD� package for two-dimensional turbu-
lent flow past a backward-facing step based on three sets of grids
�11�. The expansion ratio is 9 /8. The origin �0,0� is located at the
lower corner of the step. U is the streamwise velocity, �U=U
−Umed, where Umed is the value calculated on the medium grid.
The reference velocity Uref is the maximum streamwise velocity at
the inlet. If monotonic convergence happens, the solution with the
medium grid should always be in between the solutions given by
the coarse grid and the fine grid. However, this is not the case at
several points between y /H=1.5 and y /H=3, where H is the step
height.
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3 Existence of Oscillatory Convergence
It has been argued �12,13� that oscillatory convergence cannot

occur in the asymptotic range. At first glance, this argument seems
reasonable in that as h→0 the leading term in the Taylor series
expansion �3.1� dominates

��h� = ��0� + a1h + a2h2 + a3h3 + ¯ �3.1�
where

ak =
1

k!
� ��k��

�hk �
h=0

k = 1,2,3… �3.2�

hence, the error E�h� can be expressed as

E�h� = ��h� − ��0� = aphp �3.3�

For p�0, �3.3� shows that E is a monotonic function of h in the
asymptotic range. This argument is flawed in the sense that it
inherently assumes that the derivatives of ��h� and, thus, ak �3.2�
are small as h→0. This is not necessarily so and it depends on the
particular scheme. In fact, for upwind methods, and for mixed
methods �i.e., different schemes being activated at different grid
levels or in different flow regions�, these derivatives are discon-
tinuous. For a consistent scheme �stable and convergent�, Eq. �3.3�
is not a necessary condition—but a desirable condition.

We can actually construct numerical schemes that force the
discretization error to satisfy an oscillatory function. This idea
follows a similar line of thinking to manufacture solutions for
PDE. Here, we not only manufacture the solution but also derive
the corresponding finite difference �FD� scheme. To do this, we
use, as an example, a steady convection-diffusion equation with a
source term

u�x = �xx − �� �3.4�

with boundary conditions ��0�=0 and ��1�=1.
Here, � is the exact solution to �3.4�, u is the convection ve-

locity, and � is a constant. The numerical solution �̃ with a finite
difference scheme on a three-point stencil satisfies a general for-
mula

− ai�̃i−1 + bi�̃i − ci�̃i+1 = 0 �3.5�

where ai , bi, and ci are the coefficients of the discretized equa-
tion. They must satisfy

bi = ai + ci + � �3.6�

in order that �=const is a solution when �=0. We further assume
that the scheme satisfies an additional condition

ai = ci +
ui

h
�3.7�

Let the discretization error Ei satisfy

Ei � �̃i − �i = gif �3.8�
Assume

gi = ��i − 1��nx − i� �3.9�

f = hp cos�kh� �3.10�
so that the error will be zero at the boundaries and oscillate inside
of the domain. nx in �3.9� is the total grid number in the x direc-
tion. � is the coefficient that determines the amplitude of the
oscillation. Based on the above assumptions, the solution �̃i is

�̃i = �i + gih
p cos�kh� �3.11�

Substituting �̃ into Eq. �3.5�, we have

− ai��i−1 + gi−1f� + bi��i + gif� − ci��i+1 + gi+1f� = 0

�3.12�
Substituting �3.6� and �3.7� into Eq. �3.12�, we obtain the solu-

tion

bi =
C − Aui/h

A + B
�3.13�

where A= ��i−�i−1�+ �gi−gi−1�f , B= ��i−�i+1�+ �gi−gi+1�f and
C=−���i+gif�. ai and ci can be solved for by substituting �3.13�
back into �3.6� and �3.5�. All these coefficients form a new scheme
that one may not be familiar with. However, it ensures that the
discretization errors oscillate when we refine the grids. In Fig. 3, it
is shown that the manufactured scheme from �3.13�, �3.6�, and
�3.7� do indeed result in the oscillatory solutions �n and exhibit
oscillatory convergence as we designed in Eq. �3.8�.

4 Modeled Equations for Oscillatory Convergence
Richardson extrapolation is based on the assumption that the

first term of the Taylor expansion of the discretization error is
dominant. As explained above, when oscillatory convergence oc-
curs, this assumption may not be true, which makes the oscillatory
convergence an unresolved problem. In an effort to statistically
identify a good method from various possible methods to solve
this problem, we need first to have a statistically significant num-
ber of oscillatory solution samples. To get these samples, we pro-

Fig. 1 An example of oscillatory convergence. First-order up-
winding scheme applied to the convection term and second-
order central differencing applied to the diffusion term with u
=cos„4�x… ;� is the diffusion coefficient. „see Appendix…

Fig. 2 Normalized streamwise velocity difference based on
the medium grid at x /H=1 in a 2D turbulent flow over a
backward-facing step „using FLUENT and Spalart-Allmaras tur-
bulence model †11‡…
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pose to use the following oscillatory model equations, which may
represent the oscillatory convergence behavior of the solutions to
a finite difference equation as shown in Sec. 2 and 3. These mod-
els include

��h� = �0 + a cos�2�kh�hp �p � 1� �4.1�

��h� = �0 + a�1 − e−bh�cos�2�kh�hp �p � 0� �4.2�

��h� = �0 + a log�1 + h�cos�2�kh�hp �p � 0� �4.3�
These equations can represent the error behavior of any scheme

of first order or higher. a , k, and p �or p+1� correspond to the
maximum error amplitude, the oscillation frequency, and the order
of the scheme, respectively. Figure 4 depicts the oscillatory be-
havior of Eq. �4.1� for various values of k and p. It should be
noted here that k, in general, can be a function of h, which means
that the oscillation period could be a function of h. However, in
the present study, k will be treated as an additional independent
parameter. Let the refinement factor be a constant � such that

hi = ��i−1�h1 �4.4�

with i=1,2,3 for three sets of grids and i=1,2,3,4 for four sets of
grids. In the present analysis, � has been assigned the value of
�0.5, 0.6, 0.7, 0.8, 0.9	, which represent the usual ranges in which
the grid refinements are done. Without loss of generality, we can
normalize h1 to be 1 �i.e., h←h /hmax�. By changing a ,k, and p as
listed in Table 1, we have ensembled 270 samples from oscillatory
convergence and 270 samples for monotonic convergence. In
what follows, we use these samples to assess the performance of
various extrapolation methods.

5 Methods of Extrapolation for Oscillatory Conver-
gence

In this section, we present the statistical results with four dif-
ferent methods that have the potential to solve the extrapolation
problem in oscillatory convergence. These methods include �i� the
polynomial method, �ii� the power law method, �iii� the cubic
spline method, and �iv� the newly proposed approximate error
spline method.

i. Polynomial method. This method uses the first few terms in
Eq �3.1� to approximate ��0�. For instance, assuming the method
is first order, we can use the first three terms if we have three sets
of grids. That is,

��h� = ��0� + a1h + a2h2 �5.1�
If we have four sets of grids, then we can use

��h� = ��0� + a1h + a2h2 + a3h3 �5.2�
If the discretization scheme has an order of two or higher, this

method means essentially a curve fit to the actual error function.
For a fourth-order method, one has to keep at least four terms, i.e.,
five sets of calculations are needed.

The extrapolation to the limit approach �14,15� is recommended
to solve the equations formed by the polynomial method. This
approach uses the following formula to calculate the extrapolated
solution ��3��h� for three sets of grids and ��4��h� for four sets of
grids:

��m��h� =
��m−1���h� − �m��m−1��h�

1 − �m m = 1,2, ... �5.3�

It is easy to tabulate the sequential steps of the calculation
procedure and to add more points later.

ii. Power law method. We use the power law method proposed
by Celik and Karatekin �7� for three sets of grids. The idea fol-
lows:

��0� − ��h1� = ch1
p �5.4�

��0� − ��h2� = sign�	32

	21
�ch2

p �5.5�

��0� − ��h3� = ch3
p �5.6�

where 	32/	32= ���h3�−��h2�� / ���h2�−��h1��, the sign of which
is positive for monotonic convergence and negative for oscillatory
convergence. There are three unknows, ��0� , c, and p. We can
implement the same iterative method to solve �5.4�–�5.6� as done
by Celik and Karatekin �7�.

For four sets of grids, we can apply

��hi� − ��0� = a1hi
p + a2hi

p+1 i = 1,2,3,4 �5.7�

Oscillatory convergence is facilitated if a1 and a2 are of oppo-
site sign. It should be noted that for some cases there is no solu-
tion to Eq. �5.7�. Those cases will be counted as unsuccessful
outcomes.

iii. Cubic spline method. The well-known natural cubic splines
curve fitting technique is used to create the cubic splines between
three points or four points. ��0� can be found by extrapolating the
curve for the interval closest to h=0.

Table 1 Parameter assignments in Eqs. „4.1…–„4.3…

a 0.2, 0.4, 0.6
k 0.5, 1 �for oscillatory�;

0.01, 0.02 �for monotonic�
p 1, 2, 3
b 1

�0
1.0

Fig. 3 Designed solutions �e to Eq. „3.8… and numerical solu-
tions �n to Eq. „3.5… with the manufactured scheme

Fig. 4 An example of the behavior of oscillatory model Eq.
„4.1…
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iv. Approximate error spline methods. Still using Taylor series
expansion as in Eq. �3.1� for ��h� and substituting �h for h, we
have

���h� = ��0� + a1�h + a2��h�2 + a3��h�3 + ¯ �5.8�

The true error Et is given by

Et��,h� � ���h� − ��0� = 

k=1




ak�
khk �5.9�

and the approximate error Ea

Ea��,h� � ���h� − ��h� �5.10�

which presents the difference of the subsequent results with the
fine grid and the coarse grid. Subtracting �3.1� from �5.8� gives

Ea��,h� = 

k=1




ak��k − 1�hk �5.11�

Dividing �5.9� by �5.11� and moving Ea�� ,h� to the right-hand
side yields

Table 2 Probability and norm with different methods for oscillatory and monotonic samples

Polynomial Powerlaw
Cubic
spline

Approximate
error spline

3 points Oscillatory Probability in �0.8, 1.2� 41% 77% 55% 96%
Norm 15.3 25.2 8.10 1.38

Monotonic Probability in �0.8, 1.2� 87% 90% 90% 93%
Norm 2.62 3.55 2.01 1.69

4 points Oscillatory Probability in �0.8, 1.2� 54% 0% 99% 95%
Norm 37.2 112 0.85 1.48

Monotonic Probability in �0.8, 1.2� 96% 9% 96% 89%
Norm 1.43 353 1.27 2.20

Fig. 5 Probability of �„0… at different intervals, predicted with different methods
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Et��,h� =
1

1 −

 akh

k


 ak�
khk

Ea��,h� �5.12�

letting


 akh
k


 ak�
khk

= b0 + b1h + b2h2 �5.13�

and expanding the left-hand side of the above equation and com-
paring it with the right-hand side gives

b0 =
1

�
b1 = �1 − �

�
�a2

a1

b2 = �1 − �2

�
�a3

a1
− �1 − ���a2

a1
�2

�5.14�

Now Eq. �5.12� can be rewritten as

Et��,h� =
1

1 − �b0 + b1h + b2h2�
Ea��,h� �5.15�

In order to calculate b0 , b1, and b2, we need to calculate a1 , a2,
and a3 first. It is seen from Eq. �5.11� that

ak =
Ea

�k���,0�
k ! ��k − 1�

k = 1,2,3 �5.16�

E�k� is the kth derivative of E. Assuming that we have three sets
of grids and the solutions as �h1 ,��h1�� , �h2 ,��h2��, and
�h3 ,��h3�� with h3=�h2=�2h1, and noting that Ea�� ,0��0 leads
to three points as �h1 ,Ea�� ,h1�� , �h2 ,Ea�� ,h2��, and
�0,Ea�� ,0��, which involves the approximate error instead of the

numerical solution �̃ itself. Using the information on Ea, we can
interpolate with cubic splines with the endslopes given by
Ea��� ,0��0 and Ea��� ,h1���Ea�� ,h1�−Ea�� ,h2�� / �h1−h2�.
These endslopes are acceptable at h=0 for any scheme with order
larger than 1. For the first-order methods, in general, the slope at
h=0 is not zero. We could still obtain excellent results using the
zero slope assumption for the first-order methods, as we demon-
strate in the assessment part of this paper. Once we have
Ea

�k��� ,0�, we can calculate ak from Eq. �5.16�. As one might note,
b1 is singular at h=0 if Ea��� ,0�=0. In order to avoid this singu-
larity, Ea��� ,	� can be used to represent Ea��� ,0� by using finite
differencing at h=	, where 	 is a small value. Having obtained
b0 , b1, and b2, we can calculate ��0� from Eq. �5.15�, together
with the definition �5.9� and �5.10�.

6 Assessment of Methods
Two parameters are used to evaluate the performance of these

methods. One is the case percentage out of 270 samples for which
the calculated ��0� is in the region of �0±�; with �=0.2, this
represents the confidence level for the interval of ±20% error.
Another is the L2 norm of the true error. Here, the L2 norm is
defined by L2= �
cases��0−��0��2�1/2.

Figure 5 shows the probability distribution of the predicted
��0� at different intervals with different methods. The probability
for ��0�� �0.8,1.2� and the L2 norm are listed in Table 2. For
monotonically converging cases, all methods perform well, with
the approximate error spline �AES� method being the best. With
three-point oscillatory samples, the approximate error spline
method is overwhelmingly superior to the others, and the power
law method ranks second best. However, with four-point oscilla-
tory samples, the power law method performs the worst because
there are no solutions for 59% of the samples. The cubic spline
method and the AES method both perform very well. With three-
point monotonic samples, all methods perform well, but the power
law method is not applicable for four-point monotonic samples
since it’s not solvable for 63% of the samples.

However, we can use three solutions on the finer meshes to
predict ��0� when four solutions are available �13�. For instance,
if �h1 ,��h1�� , �h2 ,��h2�� , �h3 ,��h3��, and �h4 ,��h4�� are avail-
able and h1 is the coarsest grid size, we may use the last three
points to calculate ��0�, and the first three points to confirm the
estimation. The results following this thought are shown in Table
3. It should be first noted that the extrapolation based on the
coarse three points is the same as shown in the three-point rows of
Table 2. It is seen that the extrapolations with the fine three points
are better than the ones with the coarse three points. Improve-
ments are also observed in the polynomial, power law, and AES
methods when we compare them to the extrapolations with all
four points. Out of the four sets of grids, four triplets can be used.
The first three and the last three are used separately, and it was
found that the last three triplets gave slightly better results than
the first three, as should be expected. The other triplets, namely,
�1,3,4� and �1,2,4�, can be used to confirm the analysis based on
the other triplets. This is not done here because the AES method is
formulated only for a constant grid refinement ratio. The surpris-
ingly good performance of the AES method can be attributed to
the use of the extra information that both Ea and Et tend to zero as
h goes to zero.

7 Conclusions
The origin of oscillatory convergence in finite difference �FD�

or finite volume �FV� solutions is investigated. It has been shown
that this behavior may occur not only when mixed order methods
are used, but also when the coefficients of the FD equations ex-
hibit highly oscillatory behavior. A usual source for such varia-
tions could be the oscillatory velocity field that occurs in recircu-
lation regions near separation and reattachment points. By way of
manufactured solution to FD equations and constructing a corre-
sponding finite difference scheme, it is shown that there exist
infinitely many finite difference methods that will exhibit oscilla-
tory convergence, even in the asymptotic range. This information
is then used to construct model error equations that are used to
ensemble a large number of cases with oscillatory convergence.
These samples are then used to assess the performance of various
extrapolation methods for both monotonic and oscillatory cases.
The results show that for three-grid calculations, the newly pro-
posed approximate error spline �AES� method performs over-
whelmingly superior to the others, the commonly used power law
method ranking second best.

Table 3 Probability and norm of extrapolation calculated with the three points out of four
points, excluding the coarsest one

Polynomial Powerlaw Cubic spline
Approximate
error spline

Oscillatory Probability in �0.8, 1.2� 67% 88% 73% 99%
Norm 7.50 8.77 5.98 0.94

Monotonic Probability in �0.8, 1.2� 95% 94% 96% 92%
Norm 1.44 5.01 1.36 1.81
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We recommend that four sets of calculations be performed; the
last three should be used for extrapolation and the other triplets
should be used for confirmation of analysis. When this is done, the
best method is the approximate error spline method, and the next
best is the power law method for oscillatory convergent cases. For
monotonic convergence, all methods perform well.

Nomenclature
ai , bi , ci � coefficients of the discretized equation

a ,b ,c ,ap ,ak � coefficients
A ,B ,C � intermediate variables

Ea � approximate error
Et � true error
f � function of h
g � function of x
h � grid size
p � exponent

Pe � Peclet number
u � convection coefficient
U � velocity component
� � refinement factor
� � factor

� � variable to be solved
�n � numerical solution with mesh size h
� � diffusion coefficient
 � function of x

	21 � ��h2�−��h1�
	32 � ��h3�−��h2�

	 � a small value
� � confidence level

APPENDIX: GRID CONVERGENCE TRENDS FOR
SOME FINITE DIFFERENCE SCHEMES

In applications of CFD, it is not unusual to observe oscillatory
convergence in field variables, such as velocity �11,7�. It is sus-
pected that this behavior is usually a consequence of the use of
mixed-order methods such as first-order upwinding mixed with
second-order upwinding, or first-order upwinding with central dif-
ferencing, etc. Here, we investigate the grid convergence behavior
of several schemes applied to the steady linear convection diffu-
sion equation with variable velocities u�x� and diffusivity ��x�.
The model equations we use are

Conservative form:

Fig. 6 Error plots showing cases I„a… and I„b… in both expanded and zoomed form
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��u��
�x

=
�

�x
��

��

�x
 + �� �A1a�

Nonconservative form:

u
��

�x
= �

�2�

�x2 + �� �A1b�

In this study, three different functions were utilized for the fluid
velocity given by

u�x� = cos�4�x� �A2a�

u�x� = sin��x� − cos�8�x� �A2b�

u�x� = sin�2�x� − cos�4�x� �A2c�

In all cases, the boundary conditions used were ��0�=0 and
��1�=1. Three different schemes were used in solving this equa-
tion: a first-order upwinding scheme, a second-order central dif-
ferencing scheme, and a hybrid scheme that combined these two
schemes based on the cell Peclet number defined as

Pe =
udx

�
�A3�

When the Peclet number was less than two, the hybrid scheme
used the central differencing scheme, and when the Peclet number
was greater than two, the hybrid scheme used the upwinding
scheme.

In order to avoid using upwinding for the convective term, an
alternative semianalytical formulation was also used. In this it was
assumed that

��x� = f�x���x� �A4�

Substituting �A4� into �A1a�, with � being constant, yields

�pf − 2f���� = f�� + �f� − �pf���� �A5�

where p=u�x� /�. Equating the bracketed term on the left-hand
side to zero eliminates the first derivative

pf − 2f� = 0 �A6�

and solving �A6� gives

f�x� = e�1/2��p�x�dx �A7�
Substituting �A7� and its respective derivatives along with �A6�

into �A5�, after some simplification, we obtain

�� = 1
2�p� − 1

2 p2�� �A8�

Fig. 7 Error plots showing cases II„a… and II„b… in both expanded and zoomed form; the lower plots show convergence
behavior for very small dx values
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The boundary conditions for �A8� can be derived using relation
�A4�. Without loss of generality, we can select f�0�=1.0 and
f�1.0�=1.0, hence

��0� = 0 �A9a�

��1� = 1 �A9b�
If Eq. �A7� is analytically integrable, this approach avoids the

necessity to use upwinding for the convection terms. Equation
�A8� can be solved using central differencing for all Peclet num-
bers.

Exact Solution Verification
As another way of confirming the results from the central dif-

ferencing and upwinding schemes, the Euler-Cauchy equation was
put into the same form as the convection diffusion equation �A1b�

�x − 2�2�� + 5�x − 2��� + 3� = 0 �A10a�

u�x��� = ��x��� + 3� �A10b�

where u�x�=−5�x−2� ,��x�= �x−2�2, and �=3 as per Eq. �A1b�.
The analytical solution to this equation was found to be

��x� = C1�x − 2�−3 + C2�x − 2�−1 �A11a�

and after applying the boundary conditions ��0�=0 and ��1�=1
and solving for constants C1 and C2, Eq. �A11a� became

��x� =
− 4

3�x − 2�3 +
1

3�x − 2�
�A11b�

Equation �A11b� then gave an analytical solution with which to
verify the results from the numerical procedure.

In a final attempt to verify the results of the numerical solu-
tions, a manufactured solution for the steady convection diffusion
Eq. �A1a� was found. With no source term and additional f�x�
terms, Eq. �A1a� becomes

��u��
�x

=
�

�x
��

��

�x
 + f�x� �A12�

Assuming a convenient solution ��x�, a velocity function u�x�,
and a diffusivity ��x� , f�x� can be determined from

f�x� = u
��

�x
+ �

�u

�x
− �

�2�

�x2 −
��

�x

��

�x
�A13�

Next, a two-parameter solution can be assumed

Fig. 8 Error plots showing cases III„a… and III„b… in both expanded and zoomed form; the lower plots show convergence
behavior for very small dx values
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��x� = �0 + bx + 1
2 �tanh�a�x − x0�� − c	 �A14a�

for 0�x�1, with

c = tanh�− ax0� �A14b�

b = ��1� − ��0� −
1

2
�tanh�a�1 − x0�� − c	 �A14c�

where the derivatives of �A14a� are given by

��

�x
= b +

a

2
�1 − tanh2�a�x − x0��	 �A15�

and

�2�

�x2 = − a2��tanh�a�x − x0����1 − tanh2�a�x − x0��	� �A16�

After calculating ��
�x , �2�

�x2 ,u , �u
�x ,�, and ��

�x , f�x� can be deter-
mined from Eq. �A13�. A much simpler solution is given by

��x� = c�1 − e−x� �A17�

where c= �1−e−1�−1. Letting

� = 0 �A18�
and

u�x� = x�1 − x� �A19�
it can be deduced from Eq. �A13� that

f�x� =
��u��

�x
= x�1 − x�ce−x + c�1 − e−x��1 − 2x� �A20�

Substituting Eqs. �A18�–�A20� into Eq. �A12�, a numerical re-
sult is obtained. This result is then compared with the analytical
solution given by equation �A17�.

Results
A summary of all the cases used is listed in Table 4. This table

includes the case number, scheme, velocity function �u�x��, diffu-
sivity constant ���, and extrapolated solution for each case. Table
4 also shows L2 error norms for each case with respect to the
semianalytical solution for that case. The L2 error norms show that
the numeric solutions seem to be good. These cases will be re-
ferred to by their respective case numbers.

Fig. 9 Error plots showing cases IV„a… and IV„b… in both expanded and zoomed form; the lower plots show convergence
behavior for very small dx values
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Figures 6–9 show the error using the upwinding, central differ-
encing, and hybrid schemes calculated at x=0.5 versus the grid
spacing dx. The error is calculated from

Eh = �ext − �h�0.5�

where �h�0.5� is the solution from the scheme for the respective
grid spacing of h=dx, and �ext is the extrapolated solution. The
extrapolated solutions were found by taking the grid spacing to an
appropriately small value and extrapolating with the same trend to
dx=0. The error bounds for the extrapolated solutions were taken
as the difference between the extrapolated solution and the solu-
tion at the finest grid spacing used.

Figure 6 shows the error versus the grid spacing for cases I�a�
�upwinding� and I�b� �central differencing�. Figures 6�a� and 6�b�
show that the convergence with the upwind scheme was oscilla-
tory, even as the grid spacing became very small. In these two
plots, the error oscillated cyclically above and below zero as the
grid spacing approached zero. Figures 6�c� and 6�d� show the
convergence pattern with the central differencing scheme. With
this scheme, the convergence behavior was also oscillatory, but
the error oscillated only below zero rather than above and below
the zero. Figure 6�d� illustrates the fact that even though the cen-
tral differencing scheme converges very quickly, it still has small
oscillations as the grid spacing becomes smaller.

Table 4 Case summary

Case Scheme u�x� �

Extrapolated solution
at x=0.5

L2 error
norm

I�a� Upwind cos�4�x� 0.1 0.5+ /−0.25�10−10 0.9375412
I�b� Central cos�4�x� 0.1 0.5+ /−0.8�10−11 0.0101842
II�a� Upwind sin��x�−cos�8�x� 0.5 0.36604+ /−7�10−5 0.1139626
II�b� Central sin��x�−cos�8�x� 0.5 0.366041415+ /−3�10−8 0.0009532
III�a� Upwind sin�2�x�−cos�4�x� 0.1 16.4+ /−0.12 122.4437985
III�b� Hybrid sin�2�x�−cos�4�x� 0.1 16.44936+ /−1�10−4 1.1804976
IV�a� Upwind cos�4�x� 0.05 0.5+ /−1.0�10−10 4.8115126
IV�b� Hybrid cos�4�x� 0.05 0.5+ /−1.0�10−11 0.1255890

Fig. 10 Solutions for cases I—IV using upwinding and central differencing schemes, as well as the semi-analytical solution
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Figure 7 gives the error versus the grid spacing for cases II�a�
and II�b�. Figures 7�a� and 7�b� illustrate the convergence pattern
using an upwind scheme, while Figures 7�c� and 7�d� show the
convergence using the central differencing scheme. It is evident
that in both cases as the grid spacing became increasingly small,
the solution monotonically approached the extrapolated solution
given in Table 4.

For cases III�a� and III�b�, Fig. 8 shows the error versus the grid
spacing. The convergence pattern using an upwinding scheme is
illustrated in Figs. 8�a� and 8�b�, while Figs. 8�c� and 8�d� show
the convergence using the hybrid scheme. Much like the results
from cases II�a� and II�b� illustrated in Fig. 7 and 8 shows that
once again as the grid spacing became small, the solution mono-
tonically approached the extrapolated solution.

Figure 9 illustrates the convergence behavior of cases IV�a� and
IV�b�. Figure 9�c� shows that the hybrid scheme convergence be-
havior was oscillatory. The erratic behavior shown by the results
of Figure 9�d� can probably be attributed to the accumulation of
small round-off errors.

The numerical solutions obtained from the different approaches
described above were compared to each other in order to assess
the accuracy and the consistency of the solutions obtained. Figure
10 shows the plots of the solutions using the upwinding, central
differencing �or hybrid�, and semi-analytical solutions for cases

I–IV. It is evident from these plots that the solutions from the
central differencing �or hybrid� and semianalytical methods were
very similar in all four cases. However, Figs. 10�c� and 10�d�
show that the solutions from the upwind method were slightly
different from those from the other two methods for cases III and
IV.

Finally, the Euler-Cauchy Eq. �A10b� was solved using the up-
winding scheme in order to verify the code. The analytical solu-
tion given in Eq. �A11b� and the numerical solution were very
similar. Figure 11 shows the plot of the exact error, i.e., the dif-
ference in the two solutions at x=0.5 for different values of grid
spacing dx. It is evident from the figure that the difference be-
tween the two solutions was, at most, on the order of 10−3.
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Reynolds-Averaged With
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Turbine Applications
Full-scale numerical prediction of the aerothermal flow in gas turbine engines are cur-
rently limited by high computational costs. The approach presented here intends the use
of different specialized flow solvers based on the Reynolds-averaged Navier-Stokes equa-
tions as well as large-eddy simulations for different parts of the flow domain, running
simultaneously and exchanging information at the interfaces. This study documents the
development of the interface and proves its accuracy and efficiency with simple test cases.
Furthermore, its application to a turbomachinery application is demonstrated.
�DOI: 10.1115/1.1994877�

1 Introduction
In the design of gas turbine engines computational fluid dynam-

ics �CFD� is often used to predict the flow in single components of
the engine, such as the compressor, the combustor, or the turbine.
The simulation of the entire flow path of a gas turbine engine
using high-fidelity CFD is deemed impossible by the enormous
computational costs that it entails. However, the increasing avail-
ability of massively parallel computational resources and the im-
proved algorithmic efficiency of future flow solvers puts the simu-
lation of an entire engine within reach. In order for such a
simulation to be useful in the design process it has to deliver
accurate results with reasonable turnaround.

The goal of the advanced simulation and computing �ASC� pro-
gram of the Department of Energy �DoE� at Stanford is to develop
high-performance flow solvers that are able to use highly parallel
supercomputers for the simulation of an entire engine. Although
the development of new supercomputers is one of the main tasks
in the overall ASC effort of the DoE, the physics part of the ASC
project at Stanford investigates the development of flow solvers
for gas turbine engines in order to improve efficiency, scalability,
and modeling of physical effects. However, looking at the wide
variety of flow phenomena, which have to be simulated in the
flow path of an engine, it is clear that only the use of multiple
specialized flow solvers �one for the turbomachinery portions and
one for the combustor� can guarantee efficiency and accuracy of
such a simulation: the flow regimes and the physical phenomena,
which have to be modeled vary dramatically in these two compo-
nents. Most flow solvers used nowadays in the design process are
specialized for either of these two tasks.

The flow field in the turbomachinery portions of the domain is
characterized by both high Reynolds and high Mach numbers. The
accurate prediction of the flow requires the precise description of
the turbulent boundary layers around the rotor and stator blades,
including tip gaps and leakage flows. A number of flow solvers
that have been developed to deal with this kind of problem have
been in use in industry for many years. These flow solvers are
typically based on the Reynolds-averaged Navier-Stokes �RANS�
approach. Here, the unsteady flow field is ensemble averaged,
removing all dependence on the details of the small-scale turbu-
lence. A turbulence model becomes necessary to represent the

portion of the physical stresses that has been removed during the
averaging process. Because of the complexity of the flows in tur-
bomachinery, various parameters in these turbulence models have
to be adapted in order to deliver accurate solutions. Since this kind
of flow has been the subject of a large number of investigations,
these parameters are usually well known and, hence, the flow
solvers deliver reasonably good results.

The flow in the combustor, on the other hand, is characterized
by detached flows, chemical reactions, and heat release. The pre-
diction of detached flows and free turbulence is greatly improved
using flow solvers based on large-eddy simulations �LES�. Al-
though the use of LES increases the computational costs, it has
been the only predictive tool that is able to simulate consistently
these complex flows. LES resolves the large-scale turbulent mo-
tions in time and space and only the influence of smallest scales,
which are generally more universal and hence, easier to represent
has to be modeled �1,2�. Since the energy containing part of the
turbulent scales is resolved, the modeling of turbulent combustion
is facilitated by additional data that are provided by the LES so-
lution �3�. LES flow solvers have been shown in the past to be
able to model simple flames and are currently adapted for use in
gas turbine combustors �4,5�.

In order to predict multicomponent effects, such as compressor-
combustor instabilities, combustor-turbine hot-streak migration,
and combustion instabilities, the flow solvers that describe differ-
ent components in the gas turbine have to run simultaneously,
each computing its part of the domain, and periodically exchange
flow information at the interface �Fig. 1�. The simultaneous ex-
ecution of multiple parallel flow solvers requires the definition of
an interface that allows the exchange of flow information and a
framework for well-posed boundary conditions in order to process
the exchanged data.

The approach to couple multiple simulation codes has been
used already in other areas of application, most notably in global
climate simulations �6�, and found recently more attention in other
areas of mechanical engineering �7�. However, the idea to couple
RANS and LES flow solvers is a very recent approach and a
unique method to construct an LES-RANS hybrid.

Other LES-RANS hybrid approaches, such as detached-eddy
simulations �DES� �8� and limited-numerical scales �LNS� �9�
combine LES and RANS in a single flow solver. This requires a
sensor that determines when to switch from one approach to the
other. In our approach the domains are defined as zones by the
computational domains of both codes. The use of two separate
codes allows one to employ the optimal combination of a math-
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ematical approach, numerical method, and models in each domain
�e.g., the modeling of combustion requires the solution of addi-
tional transport equations�. Here, we can limit the solution of
these transport equations to the combustor. Furthermore, the time
step in each domain can be chosen to fulfill the local require-
ments, which means that usually the RANS domain can be com-
puted with a larger time step than the LES domain. The approach
to couple two existing flow solvers also has the distinct advantage
to build on the experience and validation that has been put into the
individual codes during their development. Furthermore, once the
procedures to couple independent simulation codes are in place,
the extension of this concept to multiphysics simulations using
other simulation tools can be done �10�.

The current study describes the framework for the simultaneous
execution of RANS and LES flow solvers and addresses the fol-
lowing points:

1. Description of the RANS and LES flow solvers �Sec. 2�
2. Presentation of the interface, which enables contact and in-

formation exchange between the simultaneously executed
flow solvers �Sec. 3�

3. Description of the boundary conditions used by the flow
solvers at the interfaces �Sec. 4�

4. Validation of the communication routines and the boundary
conditions using simple test cases �Sec. 5�

5. Demonstration of coupled RANS-LES of complex geom-
etries �Sec. 6�

2 Flow Solvers
This section describes the flow solvers used in the current study

and emphasizes the differences between the RANS and LES
approaches.

2.1 RANS Flow Solver. RANS flow solvers solve the classi-
cal Reynolds-averaged Navier-Stokes equations for turbulent
flows. With this approach, the flow variables are split into mean
and fluctuating portions ui= ūi+ui� and the Navier-Stokes equa-
tions are time averaged. This averaging process results in a set of
equations for the mean flow quantities, but leaves an undeter-
mined term ui�uj�, which has to be modeled with a turbulence
model. Turbulence models are commonly based on an eddy vis-
cosity approach, which can be modeled with varying levels of
complexity. The most commonly used models for RANS flow
solvers are two-equation models, such as the k−� or k−� models,
where two additional transport equations are solved in order to

determine values and distribution of the eddy viscosity field.
These models are typically accepted as a good compromise be-
tween efficiency and accuracy for turbomachinery applications.

The RANS flow solver used for this investigation is the TFLO

code developed in the Aerospace Computing Lab �ACL� at Stan-
ford. The flow solver computes the unsteady Reynolds-averaged
Navier-Stokes equations using a cell-centered discretization on
arbitrary multiblock meshes �11�. The convective terms are dis-
cretized using central differences �second-order accurate on
smooth meshes�. In order to maintain numerical stability artificial
dissipation is added. The solution procedure is based on efficient
explicit modified Runge-Kutta methods with several convergence
acceleration techniques, such as multigrid, residual averaging, and
local time stepping. These techniques, multigrid, in particular,
provide excellent numerical convergence and fast solution turn-
around. The turbulent viscosity is computed with the Wilcox
k−� two-equation turbulence model �12�. The dual-time stepping
technique �13–15� is used for time-accurate simulations that ac-
count for the relative motion of moving parts as well as other
sources of flow unsteadiness.

2.2 LES Flow Solver. LES flow solvers solve a filtered ver-
sion of the Navier-Stokes equations. The filter ensures that the
large-scale turbulence is resolved in time and space, which results
in a decomposition of the flow variables into a resolved and a
subgrid portion, ui= ũi+ui�. For practical purposes, a mesh filter is
applied, implying that the local cell size defines the filter at each
point in the mesh. Applying the filter to the Navier-Stokes equa-

tion leaves an undetermined term, ui�uj�
˜, which defines the subgrid

turbulence that must be modeled. As opposed to the Reynolds
stress term ui�uj� in the RANS equations, which includes the tur-
bulent motions of all scales, the LES term describes only the
subgrid turbulence. With sufficiently high mesh resolution, the
LES solution can be very robust with respect to the chosen sub-
grid model. Most models use an eddy viscosity approach for the
description of the subgrid stresses. Typically the eddy viscosity is
determined by algebraic models, such as the Smagorinsky model
�16�, or, as used in this study, by a dynamic procedure, where the
solution of the high-frequency resolved flow field is used to de-
termine the subgrid stresses �17�.

For the initial development of the interface two separate LES
flow solvers are used. The first one is a structured LES flow
solver, which has the advantage of very fast execution speeds. The
second LES flow solver used is the unstructured CDP code, which
is used for its ability to resolve complex geometries.

The structured LES flow solver chosen for this work is a code
developed at the Center for Turbulence Research �CTR� at Stan-
ford by Pierce and Moin �18�. It solves the filtered momentum
equations with a low-Mach-number assumption on an axisymmet-
ric, structured, single-block mesh. A second-order finite-volume
scheme on a staggered grid is used �19�. Centerline boundary
conditions for the radial velocity and its gradients are obtained by
averaging corresponding values across the centerline �20�. The
approach is designed to allow radial flow communication through
the centerline. The low-Mach-number approximation allows one
to circumvent the acoustic Courant-Fredriechs-Lewey �CFL� con-
dition for compressible flows and increases the permissible time-
step by at least 1 /Ma. In return, the pressure field has to be de-
termined by solving the Poisson equation. The subgrid stresses are
approximated with an eddy viscosity approach, where the eddy
viscosity is determined by a dynamic procedure �17,21�.

The unstructured LES flow solver CDP has been developed at
the Center for Turbulence Research at Stanford �22�. The filtered
momentum equations are solved on a cell-centered unstructured
mesh with a second-order accurate central differences spatial dis-
cretization �23�. An implicit time-advancement procedure is ap-
plied. As in the structured flow solver, a low-Mach-number ap-
proximation is used and the Poisson equation is solved in order to

Fig. 1 Computation of the flow path of an entire gas turbine:
decomposition of the engine. Compressor and turbine with
RANS; combustor with LES „combustor and turbine images
from †34,5‡…
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determine the pressure field. The subgrid stresses are modeled
with a dynamic procedure.

3 Interface
The role of the interface is to establish the communication be-

tween two or more simultaneously executed flow solvers and to
enable the efficient transfer of flow variables among all of them.
In the following sections, the interface routines are described to-
gether with their implementation in the previously described
RANS and LES flow solvers. Careful attention is paid to the fact
that all flow solvers are parallelized using the message-passing
interface �MPI� and that the execution of these codes is usually
carried out on massively parallel supercomputers �24�.

3.1 Peer-to-Peer Message Passing. The messages between
two separate flow solvers �peer-to-peer message passing� is very
similar to the information exchange between processors of a par-
allel computation. Many flow solvers are parallelized and use MPI
for process-to-process message passing. MPI can be used for com-
munication between different flow solvers as well.

Before establishing the contact between two flow solvers, one
must make sure that the commands for message passing that are
internal to each of the two codes do not interfere with the com-
munication between codes. With MPI it is possible to define the
scope of the message passing using communicators. The most
commonly used communicator in MPI is the standard communi-
cator MPI�COMM�WORLD, which includes all processors of all codes
started from the same MPIRUN command. Using this communica-
tor for internal message passing will inevitably result in confusion
for communication between the two codes. Hence, each code cre-
ates its own local communicator �intracommunicator� to encapsu-
late the internal message passing. All codes have to use their own
intracommunicator for all MPI commands concerning the internal
parallelization of the code instead of MPI�COMM�WORLD.

In the next step, a communicator is created for the peer-to-peer
message passing �intercommunicator�. For example, assume a
case with three flow solvers is to be run with a first instance of a
RANS code using two processors �ranks 0 and 1, local root pro-
cess 0�, an LES code using four processors �ranks 2, 3, 4, and 5,
local root process 2�, and a second instance of a RANS code using
three processors �ranks 6, 7, and 8, local root process 6�. In order
to create the intercommunicator, it is necessary that every proces-
sor knows the rank of the root processes of the other codes. A
global root process is appointed �rank 0� that collects the ranks of
the root processes of all codes �here: ranks 0, 2, and 6�, compiles
them into a list, and sends them back to the local root processes. A
chart with the structure of this procedure is shown in Fig. 2.

Since there is no intercommunicator available yet, this communi-
cation has to be done using the standard communicator
MPI�COMM�WORLD. With the knowledge of the ranks of all root
processes it is then possible to create the intercommunicators.

3.2 Handshake and Communication.

3.2.1 Handshake. The efficient parallelization of a flow solver
seeks to limit the information exchange between parallel pro-
cesses to a minimum, since the information exchange requires
considerable time compared to the actual computation and can,
therefore, limit parallel scalability. For similar reasons, it is desir-
able to minimize the communication between flow solvers run-
ning simultaneously. Since the flow solvers have to exchange flow
information rather often, either after each iteration or after a cho-
sen time step, the aim is to minimize the amount of information
communicated at each synchronization point by including an ini-
tial handshake step, which serves to optimize the communication
during the actual flow computation.

The simplest way to organize the information exchange be-
tween solvers would be to let only the root processes in each
solver communicate. However, this would mean that prior to the
peer-to-peer communication, the root processes would have to
gather the flow information to transfer from their own processes,
and after the peer-to-peer communication process is complete,
they would have to distribute the obtained information back to
their processes. This creates an obvious bottleneck in the commu-
nication pattern, which must be avoided. The solution reported
here avoids this bottleneck by direct communication among the
neighboring processors on the interface.

The initial handshake routine establishes the direct communica-
tion pattern described above �Fig. 3�. First, each processor of each
participating code must identify all the points for which it needs
flow information from its peers to define its interface boundary
conditions. The location of each of these points has to be stored in
a data structure containing three integers and three double-
precision values. The three integers are an ip number, which de-
termines what kind of flow variables are requested for this point;
an id number, which contains a unique identification number for
each point; and a flow solver number denoting the flow solver
requesting this point. The three double precision numbers contain
the x-, y-, z-coordinates of the point in Cartesian coordinates using
SI units.

The initial handshake takes place in four steps. First, each pro-
cessor sends the number of points in its own domain for which
flow data will be requested to each processor of the peer code.
This allows each code to dynamically allocate memory to store
the information received. In the second step, each processor re-
ceives information containing the location in space of the re-
quested points from each of the peer processors that request a
nonzero number of points.

In an intermediate step, each processor identifies whether a re-
quested point lies within its own domain and data can be provided
for it. During this step, the interpolation schemes required to ob-
tain the data for this point are determined and stored for later use.

In the third communication step, each processor communicates
the number of points found within its domain to all peer-processes
requesting data. Again, this allows the dynamic allocation of ar-
rays for the last step. In the fourth communication step, each
processor sends out an array to each peer processor it can serve.
The array consists of two integers containing the ip and id of the
point. Finally, each processor determines whether all of its re-
quested points can be served by peer processors. If not all points
can be served, appropriate errors are flagged.

3.2.2 Communication. The communication of flow data be-
tween iterations is rather straight forward once the initial hand-
shake is completed �Fig. 4�. Since it is known to every processor
what kind of data has to be provided to which peer processor, and
from which peer processor data is expected, the data packages can

Fig. 2 Structure chart: exchange of root ranks needed for cre-
ation of intercommunicators
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be sent directly without going through the root processes. After
the initialization step, all communication is carried out in the most
efficient possible pattern.

Each processor has to compile the data to be sent into a send
buffer. The contents of this buffer may vary for different flow
solvers and has to be defined beforehand. Although our commu-
nication procedure allows for flexible contents of the communica-
tion buffers, a standard data structure made up of seven variables
has been established. These variables contain �, �u1, �u2, �u3, �E,
k, and �t, in this order, with � being the density, u1 ,u2 ,u3 the
Cartesian velocity components, E the total energy of the fluid, k
the turbulent kinetic energy, and �t the eddy viscosity. This set of
variables provides the freedom to chose between several RANS

turbulence models without changing the interface routines, e.g.
boundary conditions can be defined from this set of data for both
the k−� and k−� turbulence models.

4 Boundary Conditions

4.1 LES Boundary Conditions. The definition of the bound-
ary conditions requires special attention on the LES side due to
the different modeling approach used when compared to the
RANS solver. Since on the LES side we resolve a part of the
turbulent energy spectrum, the challenge is to regenerate and pre-
serve the resolved turbulent motions at the boundaries.

4.1.1 LES Inflow Boundary Conditions. At the LES inflow
boundary, the challenge is to prescribe transient turbulent velocity
profiles from ensemble-averaged RANS data. A simple addition of
random fluctuations to the RANS profiles misses the temporal and
spatial correlations of real turbulence, and the fluctuations dissi-
pate very quickly. Instead, we have chosen to create a database of
turbulent fluctuations using an auxiliary LES computation of a
periodic turbulent pipe flow. The LES inflow boundary condition
can then be described as

�1�
where the subscript RANS denotes the solution obtained from the
RANS computation, and quantities with subscript DB are pro-
vided from the database. Here, t is the time, ui stands for the
Cartesian velocity components, and ūi is the ensemble average of
the velocity component ui.

Term II of Eq. �1� is the velocity fluctuation of the database.
This turbulent fluctuation is scaled to the desired value through
the multiplication by term III, which ensures that the correct level
of velocity fluctuation is recovered.

Since the RANS flow solver using a two-equation turbulence
model cannot provide all Reynolds stresses, the normal stresses
are approximated by

u�i��2
RANS = 2

3k with i = 1,2,3 �2�

with �i� denoting that no summation of the components is made.
This boundary condition has been validated thoroughly in a

previous study �25�.

4.1.2 LES Outflow Boundary Conditions. In order to take into
account upstream effects of the downstream flow development,
the LES outflow conditions have to be defined so that the mean
flow properties of the unsteady LES solution can be specified to
match the statistical properties delivered by a downstream RANS

Fig. 3 Structure chart: initial handshake to establish direct
communication between interface processors

Fig. 4 Structure chart: communication of flow data during
flow computations
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simulation. A method that has been tested in the past employs
virtual body forces in the momentum equations to drive the mean
velocity field of the LES solution to a RANS target velocity field.
The virtual body force is given by

Fi�x,t� = ��ūi,RANS�x,t� − ūi,LES�x,t�� �3�

where ūi,RANS is the solution provided by the RANS flow solver,
which is computed in an overlap region between the LES and
RANS domains, and ūi,LES is a time average of the LES solution
over a trailing time window. The time variable t is the time ac-
cording to the LES �changes with every LES time step�, and � is
the time according to the RANS time step �changes with every
RANS time step�. The body force constant � determines the
strength of the body force. Its value can be estimated by a one-
dimensional �1D� Euler analysis �26� and its minimum is given by

�min =
uB

lF
ln� �u0 − ut�

�ut
� �4�

with uB the bulk velocity, lF the length of the forcing region, u0 an
estimate for the unforced solution, and ut the target solution.

This body force ensures that the velocity profiles at the outlet of
the LES domain fulfill the same statistical properties as the veloc-
ity profiles in the overlap region computed by a downstream
RANS simulation. This makes it possible to take upstream effects
of downstream flow alterations into account. This LES outflow
condition has been validated in previous work �27�.

The numerical outflow conditions at the LES outflow are deter-
mined by the so-called convective outflow condition

��

�t
+ uc

��

�n
= 0 �5�

where � is any scalar or velocity component, uc is the convective
velocity, and n is the coordinate in the direction of the outward
normal at the boundary. The pressure at the outlet adjusts, accord-
ingly, to the velocity distribution determined by the Poisson equa-
tion and, hence, it cannot be prescribed. Instead, the proper pres-
sure conditions are adjusted using Eq. �3�.

4.2 RANS Boundary Conditions. The specification of
RANS boundary conditions from LES data is essentially straight-
forward. The unsteady LES flow data are time averaged over the
time step used by the RANS flow solver and can be employed
directly as a boundary condition.

In the current study, the compressible formulation of the RANS
flow solver and the low-Mach-number formulation of the LES
code posed a challenge. Although the RANS code allows for
acoustic waves to propagate within the limits of its domain, the
density field of the LES solution is entirely defined by mixing and
the combustion process and not by acoustics. This leads to the
need for RANS inflow and outflow conditions that allow acoustic
waves to leave the domain without spurious reflections. The con-
struction of these boundary conditions is nontrivial, particularly
for viscous flows, and must allow for variations of the flow vari-
ables at the interface locations. Currently, the local one-
dimensional inviscid �LODI� relations �28� are applied.

In the case of the LES domain upstream of the RANS domain,
the RANS flow solver has to define its inflow conditions from the
LES data. For every point of the inlet plane the mass-flux vector
��u ,�v ,�w� is imposed, delivered by the LES computation. This
allows the density � to fluctuate to account for the passing of
acoustic waves. The velocity components u ,v ,w are adjusted ac-
cordingly in order to conserve the mass flux. Variations of � are in
the order of �2% for typical Mach numbers.

For the RANS turbulence model, k is delivered by the LES
solution as the turbulent kinetic energy of the resolved turbulence.
The second variable � is currently set constant at the interfaces,
since it was found that it is difficult to retrieve a meaningful
approximation of this variable from the LES solution.

In the other case, where the LES domain is downstream of the

RANS, at the outlet the static pressure is defined by the LES and
applied as the outflow boundary condition to account for the in-
fluence of a downstream LES flow solution.

5 Interface Validation
In order to validate the interface for gas turbine applications,

two different scenarios have to be validated. The first one corre-
sponds to the upstream interface between the compressor and the
combustor. Then, the upstream flow solver is the RANS flow
solver �for the compressor geometry�, while the downstream do-
main �the combustor� is solved using an LES solver, which has to
define its inflow boundary condition from the upstream RANS
solution. The RANS flow solver obtains its outflow boundary con-
dition from the LES solution. The second scenario corresponds to
the downstream interface between the combustor and the turbine.
Conversely, the LES flow solver is now upstream and has to de-
fine its outflow conditions according to the solution of the RANS
solver downstream. The RANS flow solver obtains its inflow con-
ditions from the upstream LES.

5.1 Upstream Interface: RANS-LES. In order to validate
the upstream interface and the LES inflow boundary condition, a
coupled RANS-LES computation of an axisymmetric expansion
has been performed. The geometry is shown in Fig. 5 and has an
expansion ratio of 1:2 leading to an area ratio of 1:4. The
Reynolds number based on the upstream diameter and the bulk
velocity is Re=30,000. This test case corresponds to a well-
documented experimental configuration �29�, and extensive ex-
perimental data are available upstream and downstream of the
expansion. This allows for an accurate definition of the inflow
flow parameters and an assessment of the simulated flow
development.

Although this flow has been computed earlier using LES �25�,
here an additional level of complexity is added by using a coupled
RANS-LES approach. While this has no particular advantage for
the current test case, it allows one to validate the communication
routines and the boundary conditions on both sides of the inter-
face. A part of the flow domain upstream of the expansion is
computed with the RANS code TFLO, whereas the flow at the
expansion is computed by the LES flow solver CDP �Fig. 6�.

With the origin of the coordinate system at the center of the
expansion, the inlet velocity profiles in the RANS section are

Fig. 5 Interface validation: geometry of the experimental test
section †29‡

Fig. 6 Interface validation: integrated RANS-LES of a confined
jet
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specified at x /D=−0.75D according to the experimental data in-
terpolated between x /D=−2.0 and x /D=−0.5. The variation of
these two measured velocity profiles is minimal. The RANS flow
solver TFLO computes the flow through the upstream pipe and
transfers the data at its outlet to the subsequent LES flow solver.
The RANS domain is relatively short �0.5D, with D being the
diameter of the pipe upstream of the expansion� in order to repro-
duce the experimental flow field at the inlet of the LES domain as
closely as possible. At the RANS outlet the static pressure deliv-
ered by the LES solution is imposed.

The LES domain starts at x /D=−0.5D, which results in an
overlap region between the RANS and LES of 	x /D=0.25. The
LES flow solver CDP obtains its inflow velocity profiles from the
RANS flow solver and specifies its LES inflow boundary condi-
tions according to Eq. �1�. An overlap region between the two
domains was used in order to ensure that the data collection for
the communication of flow variables is far enough from the
boundary of the computed domain, where the results are influ-
enced by the convective boundary condition.

The RANS mesh contains 350,000 mesh points and is refined
near the wall. The LES mesh contains 1.1 million mesh points
with the mesh points concentrated near the spreading region of the
jet. The mesh has an H–O topology over the pipe cross section: an
O mesh near the pipe walls allows for the proper resolution of the
wall, while an H-mesh in the center is used to ensure the resolu-
tion of the centerline. The far field of the jet is intentionally left
relatively coarse in order to decrease computational costs.

The simulation was run for approximately five flow-through
times before collecting flow statistics for another five flow-
through times. The integrated simulation was computed using five
processors for the RANS domain and 24 processors for the LES
domain. The exchange of flow information between the two flow
solvers was performed with the interface frequency f INTERFACE
=1/	tRANS using a RANS time step of 	tRANS=0.1
D /UBULK.
The LES time step was determined by the convective CFL condi-
tion and was set to 	tLES=0.01
D /UBULK. This results in a time-
step ratio of 	tRANS/	tLES=10. The computation of a single flow
through time on an IBM SP3 using 29 processors requires �2.5 h
of wall-clock time, adding up to a total wall-clock time of 25 h for
the entire simulation.

The quality of the results of the integrated RANS-LES compu-
tation has been assessed by two means. First, the numerical results
have been compared against the experimental data. Second, a LES
of the entire domain using only the LES code has been performed,
where the inflow parameters have been specified according to the
measurements at x=−0.5. This allows a comparison of the inte-
grated RANS-LES results with a LES computation and the assess-
ment, whether errors have been introduced by uncertainties of the
LES approach in the region of the jet or by the coupled RANS-
LES approach.

Figure 7 shows the velocity profiles obtained from this compu-
tation. The mean velocity distribution of the integrated RANS-
LES computation agrees very well with the experimental data and
the LES computation. The spreading of the jet and the reattach-
ment of the flow are well predicted by both simulations.

The axial velocity fluctuations are also well predicted in the
near field of the jet by both simulations. The far field of the jet is
underresolved, and hence the numerical predictions underpredict
the turbulence levels. Since the error appears in both simulations,
this error can be associated to the mesh resolution and is not
caused by the coupling of the RANS and LES flow solver.

This computation validates the coupled RANS-LES approach
for the case, where the RANS domain is upstream of the LES
calculation.

5.2 Downstream Interface: LES-RANS. In order to verify
the interface for this second scenario where the LES domain is
upstream of the RANS domain, a swirl flow is considered. The
computation of a swirl flow presents a challenging test case for

the validation of the interface and the boundary conditions be-
cause of the complexity of the flow and its sensitivity to inflow
and outflow parameters. The sensitivity of the upstream flow field
allows for a fair assessment of the interface because it ensures that
the downstream RANS solution is of relevance for the upstream
flow development computed by LES. Yet, this test case is simple
enough to perform a LES computation of the entire domain in
order to obtain a solution, which serves as a reference to assess
the accuracy of integrated computations. Here, the structured LES
flow solver and RANS flow solver TFLO are used.

A swirl flow at an expansion with a subsequent contraction
three diameters D downstream of the expansion is considered
�Fig. 8�a��. The inlet velocity profiles are taken from an the ex-
periment described in the previous test case �29,30�. The swirl
number of the flow is S=0.3, which is just supercritical, meaning
that vortex breakdown takes place and a recirculation zone devel-
ops. The Reynolds number for this flow configuration was set to
Re=20,000. The flow conditions were chosen for maximum sen-
sitivity to boundary conditions in order to create a challenging test
case for the validation of the interface and the LES outflow
boundary conditions.

The extension and strength of this recirculation zone is strongly
influenced by the presence of the downstream contraction, which
is to be resolved by the RANS flow solver. Unless the effect of the
RANS solution is correctly transferred by the interface boundary
conditions, the details of the recirculation region in the LES do-

Fig. 7 Results of interface validation. Above: axial velocity
profiles. Below: axial velocity fluctuations. Circles: experi-
ments. Solid lines: LES with inflow from experimental data.
Dashed lines: integrated RANS-LES, RANS with inflow from ex-
perimental data, LES inflow derived from simultaneously run-
ning RANS solver.

Fig. 8 Geometry for integrated LES/RANS computations: „a…
full geometry, „b… reduced LES domain, and „c… schematic split-
ting of domain to two computational domains
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main will not be computed correctly.
The first calculation of this study is carried out using the LES

solver for the entire domain, including the expansion and the con-
traction. This computation is considered the reference solution,
and the accuracy of all subsequent computations is measured
against these results. The following computations consider that
this domain is to be computed by two or more separate flow
solvers. The geometry is divided into two computational domains
with a short overlap region. The expansion is computed with the
LES code, whereas the contraction is computed by the RANS
solver �Fig. 8�c��. If the coupling of the two codes is done appro-
priately, then this coupled simulation should recover the solution
of the LES performed for the entire domain.

The mesh of the LES domain computing the entire domain
contains 386
64
64 �	1.5 million� cells and is refined near the
walls and shear layers of the swirl flow. The mesh for the LES
domain for the coupled LES-RANS computations consists of
256
64
64 �	1.0 million� cells and closely resembles the LES
mesh for the entire domain. The flow was computed for ten flow-
through times before collecting flow statistics for another five
flow-through times. The LES of the entire domain computes one
flow-through time in 2 h wall-clock time on 12 processors on an
SGI Origin 2000. The coupled LES-RANS computation computes
the same physical time span in 1.4 h using eight processors for the
LES domain and five processors for the RANS domain.

The RANS time step was chosen to 	tRANS=0.1
D /UBULK,
which defines the interface frequency. The LES time step in this
computation was varying between different iterations in order to
allow for a maximum time step according to the CFL condition. In
order to ensure an accurate synchronization of the two flow solv-
ers, the LES time step preceding the communication was adjusted
to match the RANS time. The ratio of the time steps was approxi-
mately 	tRANS/	tLES	12–15.

Figure 9 shows the velocity profiles for three different compu-
tations. The velocity profiles denoted by the circles represent the
LES computation of the entire domain �Fig. 8�a�� and hence, the
target for the integrated computations.

In order to demonstrate the influence of the contraction on the
swirl flow at the expansion, the dashed lines show the velocity
profiles of a LES computation of the expansion without the com-
putation of the contraction �Fig. 8�b��. Convective outflow condi-
tions �Eq. �5�� are used without a body-force treatment. It can be

seen that the obtained velocity field differs substantially from the
first simulation, and hence the influence of the downstream con-
traction cannot be neglected.

The solid lines in Fig. 9 show the integrated LES-RANS com-
putation using two flow solvers for the two domains �Fig. 8�c��.
The location of the interface is denoted with a dotted-dashed line.
The velocity profiles on the left-hand side of the interface are
computed with LES and the profiles on the right-hand side with
RANS. The RANS computation of the subsequent contraction de-
livers a mean flow field, which is used to correct the outflow
conditions of the upstream LES. As a result, the velocity profiles
of the integrated LES-RANS computation tend toward the veloc-
ity profiles of the LES of the entire domain. Because of the large
RANS time step, in the RANS domain the energy of resolved
turbulence is negligible compared to the energy of the modeled
turbulence.

This test case demonstrates that the downstream development
of the flow can have a substantial influence on the upstream flow
development. The coupled RANS-LES approach is able to predict
the downstream flow development with a RANS flow solver and
transfer its effect to the upstream LES. Although in this particular
test case a LES of the entire domain was feasible, the value of
coupled LES-RANS is apparent in more complex applications
such as gas turbines, where LES is not always feasible and some
components might have to be computed with RANS.

6 Demonstration of Integrated RANS-LES in Com-
plex Geometries

In order to demonstrate the applicability of coupled RANS-LES
computations in realistic gas turbine geometries, a turbomachinery
case has been investigated �31�. The goal of this study is to test
the interface routines for the flow between the compressor and the
combustor and to study the influence of possible unsteady inter-
actions between the compressor and the combustor inlet diffuser.
The test case consists of a compressor geometry computed by a
RANS flow solver and a prediffuser �the component upstream of
the injector to the combustor� computed by a LES flow solver.

The computational study of such cases is relevant and impor-
tant, since typically these two components are developed in isola-
tion and combined tests are typically done only in a final proto-
type assembly. Yet, the upstream compressor has a substantial
influence on the diffuser performance �32,33�. The numerical pre-
diction of this flow configuration will allow for an assessment of
the interactions of the components during the design phase. One
of the most important questions for compressor-prediffuser flows
is whether separation in the diffuser takes place. Since the inflow
of the prediffuser is inhomogeneous and periodically perturbed by
blade passings, the integrated computation of this geometry can
offer insight into how to modify the geometry in order to develop
a more compact, attached diffuser.

The drawback of the choice of this configuration is that no
experimental data are available to validate the computation. The
quality of the computed results can only be guaranteed on the
basis of the separate validation process that the component codes
have undergone and the detailed testing of the interface routines
that has been presented in this and previous work. Some valida-
tion studies of the individual flow solvers are given in Yao et al.
�11� and Davis et al. �34,35� for the TFLO code and in Constan-
tinescu et al. �5�, Ham et al. �36� and Moin and Apte �22� for the
CDP code. The interface has been developed and tested, in detail,
in previous sections. Although many of the techniques necessary
for the coupling of these two flow solvers are still under develop-
ment, all necessary elements, such as the coupling procedure and
the boundary conditions on both sides, are currently in place for
the chosen test case.

The goal of this computation is to demonstrate the feasibility of
integrated RANS-LES computations in a turbomachinery environ-
ment and to identify practical issues involved in these calcula-
tions.

Fig. 9 Integrated LES/RANS computations. Velocity compo-
nents for different downstream positions. Circles: LES of full
geometry „Fig. 8„a…… dashed line: LES of expansion „Fig. 8„b……
solid line: integrated LES-RANS computation „Fig. 8„c…….
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6.1 Geometry. The compressor geometry for this test case
corresponds to that of a modified version of the NASA Stage 35
experimental rig. The one-stage experimental rig consists of 46
rotors followed by 36 stators. In order to simplify this geometry,
the rotor row has been rescaled to have only 36 blades, which
allows us to compute an axisymmetric segment of 10 deg using
periodic boundary conditions at the corresponding azimuthal
planes �Fig. 10�.

For this integrated computation, the rotor tip gap has been
closed in order to decrease the overall computational cost. The
inclusion of the tip gap can be addressed in the TFLO flow solver
and poses no additional problems from the integration point of
view. The RANS time step was chosen to resolve one blade pass-
ing with 50 intervals.

The RANS mesh is a structured multiblock mesh consisting of
�1.5 million control volumes. The speed of the rotor was set to a
relatively low 5000 rpm in order to keep the flow at the interface
within the low-Mach-number regime that the LES solver is able to
handle. This decrease in rotational speed had to be done for the
current case. In a real engine, the compressor consists of multiple
stages resulting in a higher pressure and higher temperature at the
compressor exit. The high temperature of the air in this section of
the flow path will ensure that the low-Mach-number approxima-
tion is not violated, even when the engine is at full load.

For the RANS domain, the flow solver TFLO has been used. On
the LES side, the LES flow solver CDP has been applied.

The diffuser expansion begins one stator chord length behind
the stator. The LES domain starts 1

3 chord behind the stator. The
RANS domain reaches 2

3 of the chord length into the LES domain,
which essentially means that the RANS outlet plane is right at the
beginning of the expansion of the diffuser.

The diffuser geometry has been chosen with a relatively wide
opening such that separation may occur. The diffuser opens to-
ward the centerline of the compressor. Over three chord lengths,
the diffuser opens up 0.5 chord lengths. The outer wall of the
diffuser is straight.

The LES mesh for the CDP flow solver consists of 500,000
control volumes and is concentrated near the walls. The cell size
near the wall is approximately y+=30, and while recent studies
show that this resolution may not be enough to characterize a
diffuser flow �37�, we consider it sufficient for the purpose of the
demonstration of the RANS-LES approach.

LES inflow boundary conditions were defined corresponding to
Eq. �1�. The turbulence database needed for this inflow boundary
condition was created by a periodic annular pipe flow using the
same mean flow characteristics as estimated for this flow
configuration.

The load balancing between the two flow solvers has to be done
manually. A variety of factors play a role in the efficient allocation
of available resources to the two flow solvers. These factors are
the number of control volumes in each domain, the ratio of time
steps �here: 	tRANS/	tLES=7�, the convergence speeds, the nu-
merical methods, parallel efficiencies, and partitioning limits. The
variety of factors requires a practical approach to address the load
balancing. Here, we performed simulations of the separate do-
mains and assessed the computational needs for each flow solver.
As it turned out, for the current case an equal amount of compu-
tational resources were necessary for both domains. This allows
one to minimize the idle times at the synchronization points.

6.2 Results. The computations using the unstructured LES
flow solver CDP and the multiblock structured RANS solver TFLO

were carried out using 64 processors for TFLO and 64 processors
for CDP. Here, eight blade passings were computed in 60 h of
wall-clock time using an IBM Power3 system.

The actual Mach number at the interface was Ma=0.1 ensuring
the validity of the low-Mach-number approximation in the LES
domain. With these flow conditions, the Reynolds number in the
compressor, based on the inlet velocity and the chord length, is
approximately Re=60,000. The mass flux over the interface was
conserved with an error of 	0.5%.

Since no experimental data are available for this test case, the
interpretation of the results has to be done qualitatively. Figures
11 and 12 show the axial velocity distributions at 50% of the span
of the compressor blades for an instantaneous snapshot of the
computation. The upstream RANS solution corresponds to a
phase-averaged solution, whereas the downstream LES solution is
truly unsteady.

The wakes of the stators can clearly be identified in the RANS
domain downstream of the stators. The communication of the flow
solvers at the interface ensures that the full three-dimensional
�3D� flow features are transferred from the upstream flow solver
to the downstream domain. The boundary conditions of the LES
flow solver are defined according to these data. Hence, the wake
of the stator correctly propagates across the interface and can still
be found far downstream in the diffuser. It can also be seen that
the turbulence, which is resolved in the LES domain, creates more
evenly distributed velocity profiles.

The differences in the description of turbulence are more appar-
ent in Fig. 13, which shows the vorticity distribution at 50% of the
span of the stator. Here the magnitude of the vorticity is depicted

Fig. 10 Geometry of coupled NASA stage 35/prediffuser.
RANS domain includes inflow channel, one rotor, and one sta-
tor. LES domain includes the diffuser. A 10 deg axisymmetric
sector is computed.

Fig. 11 Integrated RANS-LES of compressor/prediffuser: ve-
locity distribution at the 50% plane
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and is computed according to the unsteady flow field of both
domains. In the RANS domain, the vorticity is mainly created
because of the mean flow features, such as the wall boundary
layers, and secondary flows and vortices. The stator creates two
vorticity sheets, one on the extrado and one on the intrado. Both
vorticity sheets propagate downstream across the interface.

The vorticity distribution in the LES domain is characterized by
small-scale turbulence. Turbulence, present in the upstream
RANS domain and modeled by a RANS turbulence model, has to
be regenerated. The small-scale turbulence has been reconstructed
at the interface using the LES inflow boundary condition �Eq. �1��.
It can be seen that the small-scale turbulence interferes with the
stator wakes. The turbulent diffusion of the stator wakes in the
RANS domain is modeled with an eddy viscosity model, which
gives these a very smooth appearance. In the LES domain, the
turbulent transport is given by the resolved turbulence, and hence
vortical turbulent structures can be identified.

7 Conclusions
The current study describes an approach to combine RANS and

LES flow solvers for integrated simulations. Here, for gas turbine
applications, a framework has been established that allows one to
simulate the multicomponent effects between the turbomachinery
and the combustor. The RANS flow solver is used to compute

turbomachinery portions, whereas the LES is intended for the
combustor. The main motivation is to reduce the overall compu-
tational cost of this kind of simulations by using the appropriate
models for each of the portions of the flow path.

Part of the efforts to integrate RANS and LES flow solvers was
devoted to the setup of an efficient communication pattern be-
tween the flow solvers in a parallel environment. Algorithms have
been developed and implemented in several flow solvers that al-
low for an arbitrary number of flow solvers to be run simulta-
neously and exchange flow information at the interfaces of their
domains.

Furthermore, it has to be ensured that the received flow infor-
mation is used in meaningful boundary conditions to take the flow
physics computed by the peer flow solvers into account. For this
reason, appropriate boundary conditions have been developed and
implemented.

The interface and boundary conditions have been validated on
two test cases, one where the RANS flow solver is upstream of the
LES, and one where the RANS flow solver is downstream of the
LES. Both validation studies show very good results. Addition-
ally, the computation of the coupled modified NASA stage 35/
prediffuser geometry demonstrates the concept of integrated
RANS-LES computations in complex geometries.

The current study renders the integrated RANS-LES approach
available to study multicomponent effects in gas turbines. Recent
studies showed that the present approach can be applied to realis-
tic gas turbine geometries with reasonable computational costs
�29�. Ultimately, this approach will allow one to simulate the flow
through entire gas turbines using RANS for the turbomachinery
and LES for the combustor.
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Effect of Perforated Plate Open
Area on Gas Holdup in Rayon
Fiber Suspensions
Three different aeration plates are used to study their effect on gas holdup and flow
regime transition in fiber suspensions. The aeration plates differ by their open-area ratios
(A=0.57%, 0.99%, and 2.14%), where the hole diameter remains the same while the
number of holes increase. Experiments are performed using three different Rayon fiber
lengths (L=3, 6, and 12 mm) over a range of superficial gas velocities �Ug�18 cm /s�
and fiber mass fractions �0�C�1.8% � in a 15.24 cm dia semi-batch bubble column.
Experimental results show that the aeration plate with A=0.99% produces the highest
gas holdup in an air-water system and low fiber mass fraction suspensions, and the plate
with A=2.14% yields the lowest gas holdup in these systems. In medium fiber mass
fraction suspensions, the plate with A=0.57% produces slightly higher gas holdup val-
ues, while the other two plates yield similar results. The effect of the aeration plate open
area on gas holdup diminishes at high fiber mass fractions �C�1.2% �. All aeration
plates generate homogeneous, transitional, and heterogeneous flow regimes over the
range of superficial gas velocities for air-water and low fiber mass fraction suspensions.
However, the aeration plate with A=2.14% enhances the flow regime transition, i.e., the
superficial gas velocity at which transitional flow appears is lower. Additionally, the fiber
mass fraction at which pure heterogeneous flow is observed is lower when
A=2.14%. �DOI: 10.1115/1.1994878�

Keywords: Aeration, Bubble Column, Drift Flux, Gas Holdup, Fiber Suspension, Flow
Regime

Introduction
Bubble columns are commonly used to affect gas-liquid �GL�

or gas-liquid-solid �GLS� heat and/or mass transfer operations.
Considerable attention has been paid to the study of liquid �slurry�
properties, the gas distributor, and bubble column dimensions on
bubble column gas holdup, also termed the volumetric gas frac-
tion or void fraction. Selected studies on the liquid �slurry� prop-
erty effects include surface tension �1,2�, viscosity �3–6�, and
solid type and loading �7–11�.

Gas-liquid-fiber �GLF� systems, where flexible fibers comprise
the solid phase, have grown in interest because of their applica-
tions in the pulp and paper industry, including paper recycling
�i.e., flotation deinking�, fiber bleaching, direct-contact steam
heating, and deaeration. Several gas-liquid-fiber studies have been
devoted to gas holdup �12–17�, flow regimes �14,18,19�, and
bubble size distribution �20�.

The gas distributor is a key factor that ensures an even inlet gas
distribution, which provides the highest gas holdup and, thus, the
largest possible interfacial area for heat and mass transfer. Hence,
the geometric properties of the distributor plate are very important
to bubble column performance. Open-area ratio, defined as the
ratio of the total plate hole area to column cross-sectional area, is
related to the size and number of aeration holes in a perforated
plate distributor and is one parameter that may have a significant
effect on gas holdup.

Contradictive phenomena of the effect of open area are ob-
served in the literature. Zahradnik et al. �3�, Ohki and Inoue �21�,
Tsuchiya and Nakanishi �22�, and Zahradnik and Kastanek �23�

found that gas holdup increases with increasing plate open area
�i.e., by increasing the number of holes�. This was attributed to the
lower bubble velocity at the gas inlet hole with increasing open
area, resulting in a lower liquid circulation, which had a favorable
effect on the stability of the homogeneous flow regime. On the
contrary, Shnip et al. �24� numerically showed that the critical gas
holdup decreased with increasing open area, implying a similar
relationship with overall gas holdup.

Assuming holes are uniformly distributed over the entire aera-
tion plate and the hole diameters remain the same, a change in
open area leads to a change in hole spacing, which has an impact
on bubble-bubble interaction and the resulting gas holdup. Ka-
wasaki and Tanaka �25� investigated the effect of hole pitch with
a constant number of holes on gas holdup and observed that gas
holdup decreased with decreasing hole pitch. This was attributed
to the fact that when the hole pitch was small, bubbles tended to
coalesce together as soon as they left the hole, resulting in larger
bubble sizes and a lower gas holdup. Bubble formation at closely
spaced holes was studied by Solanki et al. �26�. They pointed out
that close spacing enhanced bubble coalescence at the gas inlet.

Hole spacing plays an important role at the inlet and directly
influences the interfacial area and transport rate in bubble column
reactors �23�. Zahradnik and Kastanek �27� found that a uniform
gas distribution led to higher gas holdup compared to a nonuni-
form gas distribution.

Hole spacing influences the inlet gas distribution through af-
fecting bubble formation at the hole. Ruzicka et al. �28� found that
there were two bubble formation modes when bubbles were
formed from two holes: �i� synchronous, where bubbles are
formed simultaneously through each hole, producing a uniform
gas holdup profile in the bottom of the column; and �ii� asynchro-
nous, where the active holes work either out of phase �bubbles are
in different stages of formation at the same time� or alternate �only
one of the two holes is active at one time�. Ruzicka et al. �29�
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found that these two modes were also observed for multihole bub-
bling, and they demonstrated that hole spacing played a key role
in the modes of bubble formation. Bubble formation modes were
also influenced by the gas flow rate. Ruzicka et al. �28� showed
that there was a critical gas flow rate beyond which the synchro-
nous regime lost its stability and promoted the transition from
homogeneous flow to heterogeneous flow. This critical gas flow
rate was a function of hole spacing and decreased with decreasing
hole spacing.

Additionally, open area combined with gas flow rate is a deci-
sive factor that ensures the stable performance of the gas distribu-
tor, leading to a uniform gas distribution. Haug �30� investigated
the stability of perforated plates and claimed that in order to get an
even gas distribution, the plate pressure drop must be above some
critical value �the pressure drop is related to the gas flow rate and
the plate open area�. There was a limiting gas flow rate below
which the gas distribution was nonuniform and liquid weeping
occurred. This caused the gas distribution to change from even to
uneven as the plate open area increased.

The effect of aeration plate open area on gas holdup in gas-
liquid systems has been studied extensively, but little information
is available for gas-liquid-solid systems. This study addresses the
effect of aeration plate open-area ratio �A=0.57%, 0.99%, and
2.14%� on gas holdup in gas-liquid-fiber systems.

Experimental Procedures
The bubble column experimental facility used in this study is

schematically represented in Fig. 1. The bubble column consists
of four 1 m sections of 15.24 cm ID cast acrylic, yielding a total
column height of 4 m. Gas is injected at the base of the column
through one of three stainless-steel perforated plates with open
areas A=0.57%, 0.99%, and 2.14% �Fig. 2�. For each plate, 1 mm
dia holes are uniformly distributed over the entire plate; this is
accomplished using a MATLAB program that equated the radial
hole pitch with the azimuthal hole pitch. Additional design criteria
included open areas as close as possible to 0.5%, 1%, and 2%, and
aeration holes spanning the column diameter. Hence, the change
in open area is produced by changing the number of uniformly
distributed holes. A gas plenum is located below the perforated
plate and is filled with glass beads to promote uniform gas distri-
bution into the test facility. Three mass flow meters are used to

measure the gas flow rate to encompass a low, medium, and high
gas flow rate range. Three pressure transducers are installed along
the column, one located at the column base, one at H=1 m, and
one at H=2 m, where H is the column height from the perforated
plate. The mass flow meters and pressure transducers are inter-
faced to a data acquisition system. Average gas flow rate and
pressures are recorded from 4000 individual readings sampled at a
frequency of 200 Hz.

The GLF system is composed of air, water, and Rayon fiber.
Three nominal Rayon fiber lengths are studied in this paper �L
=3, 6, and 12 mm�, and the fiber diameter is 20.6 �m. Various
fiber mass fractions �0�C�1.8% � and superficial gas velocities
�Ug�18 cm/s� are investigated. The superficial liquid velocity in
this study is held constant at zero.

The gas holdup ��� is measured in the upper column section
�1�H�2 m�. The gas holdup is determined from the column
pressure drop. In a semi-batch system, the frictional pressure drop
is negligible, so the total pressure drop corresponds to the hydro-
static head; in this case,

� = 1 −
�P

�Po
�1�

where �P is the difference between the average local pressure at
any two pressure transducers with Ug�0, and �Po is the corre-
sponding average value with Ug=0. For the GL system, �Po
equals the liquid hydrostatic head; for the GLF systems, �Po cor-
responds to the fiber slurry hydrostatic head.

Experiments are performed at specified fiber mass fractions
�C�, where the actual fiber mass added to the system is determined
from

Mf = CMt �2�

The total mass of the fiber-water mixture Mt is determined from
Mt=�effV, where �eff is the effective slurry density determined
from

1

�eff
=

C

� f
+

1 − C

�w
�3�

and the moisture-free Rayon fiber density is � f =1500 kg/m3 and
V is the total volume of the fiber-water mixture.

Before an experiment is initiated, the dry fiber mass calculated
from Eq. �2� is soaked in tap water for 2–3 days during which it
is washed 2–3 times to remove any residual contaminants and
additives absorbed on the fiber surface. The soaked fiber is then
added to a small container of water and mixed at low speed using
an electronic mixer equipped with a propeller blade. The resulting
mixture is then added to the bubble column, which is partially
filled with water. Additional water is added to fill the column to a
height of 2.13 m �14 column diameters�. All experiments are ini-
tiated with this slurry volume. The column is then operated at a
high gas flow rate for �35 min to ensure the slurry is well mixed
throughout the column. The gas flow rate is then reduced to the
lowest value of interest to begin data collection and then incre-
mented sequentially for additional data points. Note that data are
collected �15 min after each gas flow-rate adjustment. The gas
used in all experiments is filtered compressed air.

Fig. 1 Schematic of experimental bubble column

Fig. 2 Gas distributor plates: „a… A=0.57%, „b… A=0.99%, and
„c… A=2.14%
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Although fiber settling did occur with no air injection, the mix-
ing caused by air injection is generally sufficient to maintain a
well-mixed system when C�0.4%. At higher fiber mass fractions,
some bulk fiber settling is observed, but only at the lowest super-
ficial gas velocities, and once the air injection produces sufficient
mixing, the fiber slurry is uniformly dispersed throughout the
bubble column.

The uncertainty in the superficial gas velocity measurements is
estimated to be ±2–4%, and the absolute uncertainty in gas
holdup is estimated to be ��= ±0.006–0.008.

Results and Discussion

Air-Water. The effect of the aeration plate open area on gas
holdup in an air-water system is shown in Fig. 3 �open symbols�.
At low and high gas flow rates, where the corresponding flow
regime is homogeneous and heterogeneous, respectively, the open
area has a negligible effect on gas holdup. This phenomenon
agrees with the observations of Zahradnik et al. �3� and Zahradnik
and Kastanek �23� who observed that gas holdup began to deviate
among different open-area ratio plates after a maximum value was
recorded and then converged in the heterogeneous flow regime. In
the heterogeneous flow regime, gas holdup is determined prima-
rily by bulk liquid circulation and hardly affected by bubble for-
mation modes �3�, leading to little gas holdup difference among
the three plates in this regime. At medium gas flow rates, where
the gas flow is in the transitional regime, gas holdup behavior
deviates among the three plates. Gas holdup increases with in-
creasing open-area ratio from A=0.57–0.99 %; this agrees well
with the results of Zahradnik et al. �3�, Ohki and Inoue �21�,
Tsuchiya and Nakanishi �22�, and Zahradnik and Kastanek �23� in
which A has a favorable effect on gas holdup. Note, however, that
all of these studies were based on A�1%. When A is further
increased to 2.14%, the gas holdup decreases dramatically. In the
transitional flow regime for both A=0.57% and 0.99%, gas holdup
increases with increasing superficial gas velocity until a maximum
gas holdup is reached, and then gas holdup decreases with in-
creasing superficial gas velocity to a minimum value which indi-
cates the end of the transitional flow regime. For A=2.14%, no
maximum gas holdup is observed, and the gas holdup continu-
ously increases with superficial gas velocity.

Combining the observations in this study and Zahradnik et al.
�3�, Ohki and Inoue �21�, Tsuchiya and Nakanishi �22�, and Zahr-
adnik and Kastanek �23�, we can conclude that the favorable ef-
fect of plate open area on gas holdup is valid only within a certain
range �A�1% �; when open area is beyond this range, gas holdup
decreases. The following will provide possible explanations of the
latter phenomenon.

For a given superficial gas velocity, the gas velocity through the

aeration holes is reduced with increasing open area when the num-
ber of holes is increased with a constant hole diameter, leading to
smaller bubble sizes �31�, lower bubble rise velocities, a lower
degree of liquid circulation, and more bubbles, all which result in
a higher gas holdup and a delay in the flow regime transition. This
causes gas holdup to be higher when A=0.99% than when A
=0.57%. However, further increasing open area beyond a critical
value by increasing the number of holes with a constant hole
diameter enhances bubble coalescence near the aeration plate be-
cause of a reduced hole spacing; this leads to a reduction in gas
holdup. Solanki et al. �26� proposed that coalescence of adjacent
bubbles formed at closely spaced holes may occur and depends on
three time factors: �i� time of bubble formation tf, �ii� time re-
quired for a bubble to grow to a diameter equal to the hole sepa-
ration distance to begin bubble-bubble interaction ti, and �iii� time
to drain the liquid film between bubbles to a critical thickness for
rupture ts. For tf � ti+ ts, coalescence occurs. Smaller hole spacing
leads to a smaller bubble size required for the occurrence of in-
teraction with adjacent bubbles. Thus, provided the bubble growth
rate is constant, smaller hole spacing results in smaller ti and ti
+ ts, which leads to a higher probability of bubble coalescence
compared to a larger hole spacing. Enhanced bubble-bubble inter-
action with decreasing hole spacing was observed by Xie and Tan
�32�. Additionally, when formed through holes, bubble diameter
increases with increasing gas flow rate �33�; hence, the probability
of bubble-bubble interaction increases with increasing gas flow
rate. Therefore, when the superficial gas velocity is increased, the
likelihood of bubble coalescence is higher for A=2.14% than for
A=0.57% and 0.99%. As a result, the gas holdup for A=2.14% is
lower than that of A=0.57% and 0.99%. This is not observed
when A=0.99% because the holes are not close enough to encour-
age bubble-bubble interaction.

A lower gas holdup for A=2.14% when compared to A
=0.57% and 0.99% may also be ascribed to the fact that for A
=2.14%, the open area is too large to produce a stable gas inlet for
the range of superficial gas velocities addressed in this study.
Zahradnik and Kastanek �23� and Haug �30� determined that when
the plate pressure drop is less than a critical value, bubble forma-
tion is influenced by pressure fluctuations in the gas-liquid layer
�i.e., bubbling bed�, and the plate works in unstable operation.
Unstable distributor operation leads to partial aeration, a nonuni-
form gas distribution, large-scale liquid circulation, and an un-
stable flow pattern �30�. The critical gas flow rate at which the
plate works in stable operation is estimated by the Weber number
We. As suggested by Zahradnik and Kastanek �23�, stable plate
operation occurs when

We =
vo

2do�g

	
� 2 �4�

where vo is the aeration hole gas velocity, do is the aeration hole
diameter, �g is the gas density, and 	 is the surface tension. To
achieve the critical Weber number, a higher gas flow rate is re-
quired for a larger open area. If We=2, do=1 mm, �g
=1.57 kg/m3, and 	=72.7 mN m−1, the critical vo is 9.62 m/s.
Thus, the corresponding superficial gas velocities in our system
are 5.4, 9.4, and 20.6 cm/s for A=0.57%, 0.99%, and 2.14%,
respectively. It is clear that the plate with A=2.14% will not op-
erate in stable operation for the entire superficial gas velocity
range of this study, which may contribute to the lower gas holdup.
The gas holdup of A=0.99% is greater than that of A=0.57% after
Ug=9.5 cm/s, verifying the importance of stable plate operation.

Hole spacing also changes with open area, and this affects the
bubble formation mode, thus influencing the inlet gas distribution
and the resulting gas holdup and flow regime transition. In addi-
tion to bubble jetting, Ruzicka et al. �29� and Xie and Tan �32�
identified two basic bubble formation modes for multihole aera-
tion plates, synchronous and asynchronous. The synchronous
mode produces a uniform gas holdup profile and low liquid cir-

Fig. 3 Gas holdup and flow regime transition using different
aeration plates in an air-water system
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culation. This is favorable for the homogeneous flow regime in
bubble column operation. In the asynchronous mode, bubble for-
mation at adjacent holes is either out of phase, or they form at
alternating holes. Some active holes tend to produce liquid circu-
lation that makes the other holes passive, resulting in a nonuni-
form inlet gas distribution. This further enhances liquid circulation
and leads to flow regime transition. They also observed that hole
spacing plays an important role in the bubble formation modes.
When the hole spacing is large, the synchronous mode occurs at
gas flow rates below a critical value. When hole spacing is small,
the close proximity prevents the gas flow through adjacent holes
from being in phase and no synchronous mode is observed. The
critical gas flow rate at which the transition from the synchronous
to asynchronous mode occurs decreases with decreasing hole
spacing �i.e., increasing open area� �28�. Therefore, the critical gas
flow rate for A=2.14% is lower than that of A=0.57% and 0.99%.
It is possible that at the same superficial gas velocity, the tendency
of the synchronous regime for A=0.57% and 0.99% is higher than
that of A=2.14%. This would produce a more uniform gas distri-
bution for A=0.57% and 0.99% than 2.14%. Zahradnik and Kas-
tanek �27� demonstrated that a nonuniform gas distribution will
induce liquid circulation and an unstable flow pattern; this results
in enhanced bubble-bubble interaction and bubble coalescence,
leading to a reduced gas holdup when compared to a uniform gas
distribution at the same gas flow rate. From Fig. 3 it is plausible
that the aeration plates with A=0.57% and 0.99% produce a more
uniform inlet gas distribution than that from A=2.14%.

Figure 3 also shows the flow regime transitions for A=0.57%,
0.99%, and 2.14% by applying the Zuber-Findlay drift flux model
�34� �solid symbols�, a detailed explanation is provided by others
�3,16,35�. In this model, Ug /� represents the mean bubble rise
velocity. All three plates produce homogeneous, transitional, and
heterogeneous flow regimes. For the homogeneous flow regime,
Ug /� slightly decreases with increasing Ug and reaches a mini-
mum value denoted as the critical superficial gas velocity at which
transitional flow appears. Similar observations were obtained by
Tsuchiya and Nakanishi �22�. The negative slope of the plot of
Ug /� versus Ug in the homogeneous regime for all aeration plates
may be the result of downward liquid flow between bubbles, com-
pensating for the amount of liquid carried by the bubble wake to
ensure conservation of mass �36�. This downward liquid flow has
a hindrance effect on the bubble rise velocity leading to a bubble
rise velocity less than the terminal rise velocity. This reduction in
bubble rise velocity increases with increasing gas holdup �i.e.,
increasing superficial gas velocity� �24,37�.

When the superficial gas velocity is further increased, bubble-
bubble interaction is enhanced, and bubble coalescence occurs,
which indicates the flow regime transition. In the transitional flow
regime, gross liquid circulation, increasing with increasing super-
ficial gas velocity, changes the slope of Ug /� versus Ug to in-
crease with increasing Ug.

The transitional superficial gas velocity, identified by the down
arrows in Fig. 3, is similar when A=0.57% and 0.99%. This is
because the two plates produce similar gas holdup results until a
maximum gas holdup is reached for A=0.57%. This observation
indicates that increasing the open-area ratio may increase the
maximum gas holdup, but it may not delay the flow regime tran-
sition. The transitional superficial gas velocity is �3.4 cm/s for
A=2.14%, which is less than �5.7 cm/s for A=0.57% and
0.99%. The lower superficial gas velocity at which transition oc-
curs when A=2.14% may be attributed to two affects. First,
bubble coalescence is enhanced with closer hole spacing �large
open area�, and this induces liquid circulation and triggers flow
regime transition. Second, a large open area �close hole spacing�
results in a partially activated aeration plate �29�, leading to a
nonuniform gas distribution and liquid circulation, promoting flow
regime transition.

Fiber Suspensions.

Effect of Fiber Mass Fraction. Typical trends of the effect of
fiber mass fraction on gas holdup using three different gas aera-
tion plates �A=0.57%, 0.99%, and 2.14%� are shown in Fig. 4 for
L=3 mm long Rayon fiber. For all three aeration plates, gas
holdup decreases with increasing fiber mass fraction. This phe-
nomenon is attributed to the promotion of bubble coalescence
and/or reduction of bubble breakup due to the increase in the
effective suspension viscosity with increasing fiber mass fraction,
and the increasing large bubble sizes due to the increasing yield
stress of the fiber suspension; this has been explained by Su and
Heindel �16�. The reduction in gas holdup with increasing fiber

Fig. 4 Effect of fiber mass fraction on gas holdup with differ-
ent aeration plates for L=3 mm Rayon fiber suspensions: „a…
A=0.57%, „b… A=0.99%, and „c… A=2.14%
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mass fraction is more pronounced at low fiber mass fractions.
When fiber mass fraction is high �C�1.4% �, fiber addition does
not significantly affect gas holdup. The trends of gas holdup varia-
tion with fiber mass fraction of A=0.57% and 0.99% are similar.
At low fiber mass fractions �C�0.4%, Figs. 4�a� and 4�b��, gas
holdup behavior is similar to that of an air-water system: there is
a maximum gas holdup, indicating homogeneous, transitional, and
heterogeneous flow regimes exist over the range of superficial gas
velocities. The effect of fiber mass fraction is more significant in
the transitional flow regime, while little influence is observed in
the homogeneous flow regime. At C�0.4%, gas holdup continu-
ously increases with increasing superficial gas velocity and pure
heterogeneous flow �38� is observed.

For A=2.14% �Fig. 4�c��, gas holdup increases with increasing
superficial gas velocity monotonically for all fiber mass fractions.
At low fiber mass fractions �C�0.25% �, the homogeneous flow
regime exists at low superficial gas velocities, and when C
�0.25%, pure heterogeneous flow appears over the range of su-
perficial gas velocities. Similar to A=0.57% and 0.99%, gas
holdup is not influenced by fiber mass fraction in the homoge-
neous flow regime, whereas the transitional flow regime is af-
fected by fiber addition. Similar trends are obtained for Rayon
fiber with L=6 and 12 mm for all three aeration plates.

Effect of Aeration Plate Open Area. Figure 5 depicts the effect
of aeration plate open area on gas holdup in L=3 mm long Rayon
fiber suspensions. At low superficial gas velocities �Ug

�3 cm/s�, the open-area ratio has a negligible effect on gas
holdup. This phenomenon is similar to that of the air-water sys-
tem. When Ug�3 cm/s, the effect of aeration plate open area
ratio on gas holdup is pronounced. At low fiber mass fractions
�e.g., C=0.1%�, where homogeneous, transitional, and heteroge-
neous flow regimes exist, the aeration plate open area has a sig-
nificant effect on gas holdup behavior in the transitional gas flow
regime; a higher gas holdup is observed when A=0.57% and
0.99% than that recorded with A=2.14%. This was also observed
in the air-water system �i.e., Fig. 3�. In the heterogeneous flow
regime, open area influences gas holdup in fiber suspensions,
which was not observed in the air-water system �see Fig. 3�. This
may be because, for the air-water system, there is a significant
amount of liquid turbulence at high superficial gas velocities,
leading to a negligible effect of the aeration plate on bubble be-
havior. In contrast, fiber addition results in a decrease in turbu-
lence intensity because the effective suspension viscosity in-
creases with increasing fiber mass fraction, and the effect of
bubble formation on gas holdup becomes important. The reasons
that the aeration plate with A=2.14% decreases the gas holdup in
fiber suspensions compared to that of A=0.57% and 0.99% is
ascribed to the same reasons as that of the air-water system.

The effect of aeration plate open area on gas holdup for A
=0.99% is influenced by fiber mass fraction. With increasing fiber
mass fraction, the performance of A=0.99% changes from similar
to A=0.57% to that similar to A=2.14%. At low fiber mass frac-
tion �C=0.1% �, the gas holdup when A=0.99% has similar be-
havior to that of the air-water system, i.e., it is higher than that of
A=0.57%. As the fiber mass fraction is further increased �C
=0.25% �, the gas holdup of A=0.99% drops faster than A
=0.57% and the two are very similar. At C=0.60%, the gas
holdup of A=0.99% is lower than that of A=0.57%, but almost
the same as that of C=2.14%. The larger decrease in gas holdup
when A=0.99% with increasing fiber mass fraction than that of
A=0.57% may be attributed to the increase in the bubble forma-
tion size with increasing fiber mass fraction; when the bubble
formation size is large enough, adjacent bubbles near the aeration
plate begin to coalesce, which is enhanced when A=0.99% be-
cause of its smaller hole spacing compared to that of A=0.57%.
This leads the performance of A=0.99% to be closer to that of
A=2.14% with increasing fiber mass fraction.

Figure 5 also demonstrates that the effect of aeration plate open
area is less significant with increasing fiber mass fraction when
the fiber mass fraction is high. The difference of gas holdup of the
three aeration plates disappears when the fiber mass fraction is
C�1.2%. Similar trends are observed for L=6 and 12 mm Rayon
fiber. Consequently, the aeration plate open area has an effect on
gas holdup in low fiber mass fraction suspensions, which depend
on the gas flow regime. However, in high fiber mass fraction
suspensions, the aeration plate open area has a negligible effect on
gas holdup.

Fig. 5 Effect of aeration plate open area on gas holdup at vari-
ous fiber mass fractions „L=3 mm…: „a… C=0.1%, „b… C=0.25%,
„c… C=0.6%, and „d… C=1.2%
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It can be concluded that increasing aeration plate open area may
enhance or reduce gas holdup in air-water and air-water-fiber sys-
tems, and the results are influenced by bubble formation size, hole
diameter and spacing, superficial gas velocity, and fiber mass frac-
tion. Increasing aeration plate open area tends to increase gas
holdup when the hole spacing is large enough that a bubble
formed at the inlet hole has no interaction with adjacent bubbles.
Otherwise, increasing the open area tends to reduce gas holdup
when bubble formation size is increased by either increasing hole
diameter �39�, superficial gas velocity, or fiber mass fraction.

Effect of Fiber Length. The effect of fiber length on gas holdup
behavior for the three open area ratios are shown in Fig. 6. The
trends of A=0.57% and 0.99% are similar, and for low and me-
dium fiber mass fractions, gas holdup decreases significantly
when the fiber length is increased from L=3 mm to L=6 mm, but
a negligible change is observed when the fiber length is further
increased to L=12 mm. In contrast, there is a negligible effect of
fiber length on gas holdup when A=2.14% at low fiber mass frac-
tions �e.g., C=0.1%�. At medium fiber mass fractions �e.g., C
=0.8%�, a decrease is observed between L=3 mm and L=6 mm,
which is similar to that of A=0.57% and 0.99%.

In general, increasing fiber length tends to reduce gas holdup in
fiber suspensions. However, for long fiber �e.g., L=6 and 12 mm�,
the effect of fiber length on gas holdup is not significant. This
phenomenon is analogous to that of a viscous liquid. When liquid
viscosity is high, a further increase in viscosity has little effect on
gas holdup �10�. This may be attributed to two competing effects:
�i� bubble rise velocity of small bubbles is reduced in highly vis-
cous liquids �40�, leading to an increase in gas holdup; and �ii�
bubble coalescence is enhanced, reducing gas holdup. In fiber
suspensions, the longer the fiber, the larger the effective viscosity
at the same fiber mass fraction. Therefore, long fiber suspensions

tend to hinder bubble rise and enhance bubble coalescence. In
addition, the yield stress increases with fiber length �41�, which
further reduces bubble rise velocity and traps more bubbles. These
factors may be the reasons that gas holdup does not reduce sig-
nificantly with increasing fiber length for long fibers.

Figure 6 also shows that at high fiber mass fractions �C
=1.4% �, the three aeration plates produce similar gas holdup re-
sults for all three fiber lengths. To more clearly depict the effect of
open area and fiber length at high fiber mass fractions, Fig. 7
provides all results for C=1.4%, which shows that when the fiber

Fig. 6 Effect of fiber length on gas holdup: „a… A=0.57%, „b… A=0.99%, and „c… A=2.14%

Fig. 7 Effect of fiber length and aeration plate open area on
gas holdup at C=1.4%
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mass fraction is high, gas holdup has only a weak dependence on
fiber length and aeration plate open area. It also implies that the
gas holdup in a high fiber mass fraction suspension is mainly
determined by slurry mixing.

Flow Regime Transition. Figure 8 shows the effect of fiber mass
fraction, length, and open area on the superficial gas velocity at
which transitional flow is observed for the three distributor plates.
The superficial gas velocity at which transitional flow begins is
determined by the Zuber-Findlay drift flux model �34� and shown
by the arrows in Fig. 3. Additional details in this determination
can be found in �3,16,35�. In general, fiber addition tends to de-
stabilize the homogeneous flow regime, and when the fiber mass
fraction is beyond a critical value, pure heterogeneous flow is
observed over the entire range of superficial gas velocities. This
phenomenon is ascribed to the increase in effective suspension
viscosity with increasing fiber mass fraction. Zahradnik et al. �3�
have shown that the flow pattern will change from that of the
existence of three flow regimes �homogeneous, transitional, and
heterogeneous� to pure heterogeneous flow as the liquid viscosity
increases. The fiber length has an effect on flow regime transition
where the longer the fiber, the lower the superficial gas velocity at
which transition begins. This effect is more significant when fiber
length increases from 3 to 6 mm. There is not a pronounced dif-
ference between L=6 and 12 mm in either the superficial gas
velocity or the critical fiber mass fraction at which transitional
flow begins. This is consistent with the trends shown in Fig. 6 that
the effect of fiber length on gas holdup is not significant when
fiber length is increased from 6 to 12 mm for all three aeration
plates.

It is apparent that in fiber suspensions, increasing aeration plate
open area is not favorable to the homogeneous flow stabilization.
The aeration plate with A=2.14% obviously encourages the flow
regime transition and the transitional superficial velocities for the
three fiber lengths are lower than those of A=0.57% and 0.99%.
A=0.99% produces very similar results to that of A=0.57 for all
three fiber lengths. The critical fiber mass fraction beyond which a
pure heterogeneous flow regime exists is also dependent on the
aeration plate open area and decreases with increasing open area.
When A=0.57%, pure heterogeneous flow appears when C
�0.6%, and the dependence of the critical fiber mass fraction on
fiber length is negligible. For the other two plates, the critical fiber
mass fraction is affected by fiber length between L=3 and 6 mm.
A=0.99% does not affect the critical fiber mass fraction for L
=3 mm, and homogeneous flow also can be observed when C

0.6%. For L=6 and 12 mm, homogeneous flow exists when C

0.4%. When A=2.14%, the critical fiber mass fraction further

decreases. For L=3 mm, homogeneous flow is observed when C
�0.25%, and for L=6 and 12 mm, this critical value reduces to
0.16%.

Conclusions
Three aeration plates with different open areas �A=0.57%,

0.99%, and 2.14%� and the same hole diameter �do=1 mm� were
used to study their effect on gas holdup and flow regime transition
in Rayon fiber suspensions. When A=0.57% and 0.99%, a pro-
nounced maximum gas holdup was recorded for the air-water and
low fiber mass fraction systems; this was not observed when A
=2.14%. For an air-water system, gas holdup did not depend on
open area in the homogeneous or heterogeneous flow regime, but
open area influenced the transitional flow regime. Gas holdup was
higher when A=0.99% than that of A=0.57%; it reduced signifi-
cantly when A=2.14% from that of A=0.57%. For fiber suspen-
sions with C�1.2%, aeration plate open area had no effect on gas
holdup in the homogeneous flow regime, but differences were
observed in the transitional and heterogeneous flow regimes. Gas
holdup decreased with increasing fiber length when C�1.4% for
all three aeration plates. At high fiber mass fractions, no depen-
dence of gas holdup on fiber length or aeration plate was ob-
served.

Homogeneous, transitional, and heterogeneous flow conditions
were observed at low fiber mass fractions for all three aeration
plates. However, the aeration plate with A=2.14% tended to de-
stabilize the homogeneous flow regime, and the transitional super-
ficial gas velocity decreased from that recorded when A=0.57%
and 0.99%. In addition, the critical fiber mass fraction at which
the flow pattern changed from homogeneous, transitional and het-
erogeneous flow to pure heterogeneous flow was lower when A
=2.14%.

Finally, increasing aeration plate open area is favorable to gas
holdup when A�1%. The effect depends on the bubble forma-
tion, hole spacing, and liquid �slurry� properties.
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Nomenclature
A � open area, %
C � fiber mass fraction, %
do � hole diameter, mm
H � column height, m
L � fiber length, mm

Mf � dry fiber mass, kg
Mt � total mass of fiber-water mixture, kg
P � average pressure of the air-water-fiber suspen-

sion, Pa
Po � average pressure of the water-fiber suspension,

Pa
tf � time of bubble formation
ti � time for a bubble, growing to a diameter equal

to the hole separation distance, to begin
bubble-bubble interaction

ts � time to drain the liquid film between bubbles
to a critical thickness for rupture

Ug � superficial gas velocity, cm/s
V � volume of the fiber-water mixture, m3

vo � aeration hole gas velocity, cm/s
We � Weber number

Greek Letters
� � gas holdup

�eff � effective density of the fiber-water mixture,
kg/m3

�g � gas density, kg/m3

Fig. 8 Effect of aeration plate open area, fiber mass fraction,
and fiber length on the superficial gas velocity at which flow
regime transition is initiated
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� f � dry fiber density, kg/m3

�w � water density, kg/m3

	 � surface tension, mNm−1

� � difference
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1 Introduction
Peristaltic pumping is a form of fluid transport generated by a

progressive wave of area contraction or expansion along a length
of a distensible tube containing fluid. In the living systems peri-
stalsis is the mechanism used to propel foodstuffs through esopha-
gus and alimentary canal, urine in ureter, and semen in vas defer-
ens ducts. Engineers developed pumps having industrial and
physiological applications adopting the principle of peristalsis.
Shapiro et al. �1� and Fung and Yih �2� were some of the first to
mathematically model peristaltic transport to explain the basic
fluid mechanics aspects using wave and fixed frame analyses re-
spectively. The experimental works of De Vries et al. �3� and

Chalubinski et al. �4� reveal that the intrauterine fluid motion is
due to peristalsis. In view of this, Eytan and Elad �5� have studied
the peristaltic flow in an asymmetric two-dimensional channel to
explain the motion of intrauterine fluid in a sagittal cross section
of the uterus. In fact, the sagittal cross section of the uterus may
be better approximated by a tube of rectangular cross section than
a two-dimensional channel. Tsangaris and Vlachakis �6� have ob-
tained an exact solution of the Navier-Stokes equations for a pul-
sating flow in a rectangular duct in order to explain the blood flow
in fiber membranes used for the artificial kidney. The effects of
sidewalls on axial flow in rectangular ducts with suction and in-
jection have been investigated by Erdogan �7�.

The aim of the present study is to investigate the effects of
aspect ratio ��=a /d� on the peristaltic pumping by introducing
lateral walls separated by a distance 2d in a channel of height 2a.
Symmetric peristaltic waves are assumed to propagate on two
opposite horizontal sidewalls with constant velocity of the chan-
nel, and the remaining lateral walls are not subjected to peristalsis.
Aspect ratio ��1 means that height is less compared to width,
and �=0 corresponds to a two-dimensional channel. When �=1,
the rectangular duct becomes a square duct and for ��1, the
height is more compared to width. Pumping characteristics are
discussed for different values of � in detail.

2 Mathematical Formulation and Solution
Consider the motion of an incompressible viscous fluid in a

duct of rectangular cross section with width 2d and height 2a as
shown in Fig. 1. Cartesian coordinate system �X ,Y ,Z� is with X,
Y, and Z axes corresponding to axial, lateral, and vertical direc-
tions, respectively, of a rectangular duct. The duct walls are flex-
ible, and an infinite train of sinusoidal waves propagate with con-
stant velocity c only along the walls parallel to the XY plane in the
axial direction. The peristaltic waves on the walls are given by

Z = H�X,t� = ± a ± b cos
2�

�
�X − ct� �1�

where b is the wave amplitude and � is the wavelength. The walls
parallel to XZ plane remain undisturbed and are not subjected to
any peristaltic wave motion. We assume that the lateral velocity is
zero as there is no change in lateral direction of the duct’s cross
section. Under the assumptions that the pressure difference across
a wavelength is constant and the length of the tube is an integral
multiple of the wavelength, the flow becomes steady in a wave
frame �x ,y ,z� moving with velocity c away from the fixed frame
�X ,Y ,Z�. The transformation between the two frames is given by

x = X − ct, y = Y, z = Z, u = U − c, w = W ,
�2�

p�x,z� = P�X,Z,t�

where �u ,0 ,w� and �U ,0 ,W� are the velocity components, and p
and P are the pressures in wave and fixed frames of reference,
respectively.

Using the nondimensional quantities
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x̄ =
x

�
, ȳ =

y

d
, z̄ =

z

a
, � =

a

�
, ū =

u

c
, �̄ =

�

c�
,

t̄ =
ct

�
, h =

H

a
, � =

b

a
, p̄ =

a2p

	c�

in the Navier-Stokes equations and equation of continuity, which
governs the flow, we get �dropping the bars�

Re�u
�u

�x
+ w

�u

�z
� = −

�p

�x
+ �2�2u

�x2 + �2�2u

�y2 +
�2u

�z2 �3�

Re �2�u
�w

�x
+ w

�w

�z
� = −

�p

�z
+ �2��2�2w

�x2 + �2�2w

�y2 +
�2w

�z2 � �4�

�p

�y
= 0 �5�

�u

�x
+

�w

�z
= 0 �6�

where �=a /d �aspect ratio� and Re=
ac� /	 �Reynolds number�.
Under lubrication approach �negligible inertia Re→0 and long

wavelength ��1�, the Eqs. �3�–�6� reduce to

�2�2u

�y2 +
�2u

�z2 =
dp

dx
�7�

�u

�x
+

�w

�z
= 0 �8�

The corresponding no-slip boundary conditions are

u = − 1 at y = ± 1 �9�

u = − 1 at z = ± h�x� = ± 1 ± � cos 2�x �10�

where 0���1, �=0 for straight duct and �=1 corresponds to
total occlusion. Introducing x=x�, y=�y�, z=z� in Eq. �7�, we get

�2u

�y�2 +
�2u

�z�2 =
dp

dx�
�11�

substituting u=u�−1− 1
2 �dp /dx���h2−z�2� in �11�, we get

�2u�

�y�2 +
�2u�

�z�2 = 0 �12�

The corresponding boundary conditions are

u� =
1

2

dp

dx�
�h2 − z�2� at y� = ±

1

�
�13�

u� = 0 at z� = ± h�x�� �14�

The solution of �7�, using Eqs. �11�–�14�, valid in −1�y�1,
−h�x��z�h�x�, satisfying the corresponding boundary condi-
tions �9� and �10� is given by

u = − 1 −
h2�x�

2

dp

dx�1 −
z2

h2�x�

− 4�
n=1


�− 1�n cosh �ny/�h�x�cos �nz/h�x�

�n
3 cosh �n/�h�x� 	 �15�

where �n= �2n−1�� /2.
The volumetric flow rate in the rectangular duct in the wave

frame �in one quadrant� is given by

q =

0

1

0

h�x�

udydz = − h�x� −
h3�x�

3

dp

dx�1

− 6h�x���
n=1


1

�n
5 tanh �n/�h�x�	 �16�

The instantaneous flux Q�x , t� in the laboratory frame is

Fig. 2 Variation of �p versus Q̄ with �=0.6, „a… for small val-
ues of �, „b… for large �, and the corresponding graphs for
Poiseuille flow are given in dashed lines.

Fig. 1 Schematic diagram of peristaltic flow with waves propa-
gating on horizontal walls in a rectangular duct
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Q =

0

1

0

h�x�

�u + 1�dydz = q + h�x� �17�

The average flux Q̄ over one period �T=� /c� of the peristaltic
wave is

Q̄ =
1

T
0

T

Qdt = q + 1 �18�

From Eqs. �16� and �18�, the pressure gradient is obtained as

dp

dx
=

− 3�Q̄ − 1 + h�x��

h3�x��1 − 6h�x���
n=1


1

�n
5 tanh �n/�h�x�	 �19�

Integrating Eq. �19� with respect to x over one wavelength, we get
the pressure rise�drop� over one cycle of the wave as

�p = − 3�Q̄ − 1�I1 − 3I2 �20�

where I1=�0
1�dx / �h3�x��1−k��, I2=�0

1�dx / �h2�x��1−k��, and k
=6h�x���n=1

 �1/�n
5�tanh �n /�h�x�.

In the limit �→0 �keeping a fixed and d→�, the rectangular
duct reduces to a two-dimensional channel and our results reduce
to those given by Shapiro et al. �1�.

3 Discussion of Results
In order to understand the influence of lateral walls on the

pumping characteristics one has to analyze the pressure-flux rela-
tion given in Eq. �20� for different values of �. Physically, as �
increases from small value to a value greater than one, a transition
takes place from a rectangular duct with domination of width to
the one with height passing through a cross section of a square
duct. The integrals and the series in Eq. �20� are evaluated nu-
merically by built-in routines of MATLAB. Figure 2 depicts the
pumping curves with a fixed value of �=0.6 for different values
of �. For small values of �, any two pumping curves intersect at
a point in the first quadrant as seen in Fig. 2�a�. As long as this
point remains in the first quadrant, to the left of this point pump-
ing increases and to the right both pumping and free pumping
��p=0� decreases with increasing �, i.e., vertical dimension a is
large compared to horizontal dimension d. This point of intersec-
tion moves to the fourth quadrant for large values of � as depicted
in Fig. 2�b�. As a consequence, both pumping and free pumping
increase with increasing �. These results indicate how the finite
extent of the width of the duct alters the pumping characteristics,
which is not captured by earlier theories existing in the literature
�1�. It has been observed that for �=0.01, the pumping graph
overlaps the one with �=0, indicating that when the width of the
duct is 100 times the height, the assumption of the two-

Fig. 3 Variation of �p versus � with �=0.6, „a… for different
values of flux Q̄ and „b… enlargement of „a… near �=0

Fig. 4 „a… Variation of Q̄ versus � with �=0.6, for different
value of �p, and „b… variation of free pumping flux with � for
different �
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dimensional channel for a rectangular duct is quite satisfactory. In
order to compare our results to the Poiseuille flow, i.e., without
peristalsis ��=0�, we have plotted the pumping characteristics

given by �p versus Q̄ in dashed lines in Fig. 2. Here �p is the
externally imposed pressure gradient on the flow. In Poiseuille

flow, flux rate Q̄ decreases with increasing � for a favorable pres-
sure gradient �p ��0�, where as this behavior is achieved for
�p�0 in peristaltic flow �see Fig. 2�a��. For large values of �,
there exist a range of favorable pressure gradients in which the
flux rate increases in peristaltic flow, whereas it decreases in a
Poiseuille flow as seen in Fig. 2�b�.

In order to understand the effect of � more clearly, we have
considered the variation of �p versus � for different values of flux

rates Q̄ with �=0.6 in Fig. 3. It is observed from the Fig. 3�a� that

�p strictly increases for small values of Q̄=0,0.2 and strictly

decreases for larger flux Q̄=0.4 for all values of �. But the curve

corresponding to Q̄=0.3 shows a decrease in �P as � increases
and attains a minimum around �=100 before it starts increasing
for a further increase in �. Figure 3�b� is an enlargement of Fig.

3�a�, showing that the curves for various Q̄ do not meet at a single

point near �=0. The variation Q̄ with � for different �p and � is

depicted in Fig. 4. Flow rate Q̄ decreases for �p=0 and increases
for �p=4 only for small values of �, as shown in Fig. 4�a�.
Whereas Fig. 4�b� shows that the free pumping flux rate Q̄ attains
a minimum around �=25 and starts increasing for a further in-
crease in �. Furthermore, we observe pumping flux increases with
increasing �, and also the minimum free pumping flux rate at-
tained at � increases with increasing �. We observe that even
though the pumping increases with increasing �, free pumping
starts decreasing until a certain limiting value of �, and thereafter
it increases with an increase in � but never attains the free pump-
ing limit for a channel �corresponding to �=0�. The peristalsis
works as a pump against higher pressure for a given ��=b /a� at
large values of � as they give rise to a peristaltic wave with a
large amplitude.

The two nonzero components of velocity u and w are functions
of x, y, and z, and this motion is a pseudo plane motion of the first
kind. The stream function associated with the flow depends on all
the three coordinates. The regions of reflux and trapping can be
studied through the streamlines in the xz plane fixing a lateral
station y. This is not done here, as the main emphasis is to bring
out the effects of the presence of lateral walls on pumping char-
acteristics.
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